If the counting function N(x) of integers of a Beurling generalized number system satisfies both and , then the counting function π(x) of the primes of this system is known to satisfy the Chebyshev bound π(x) ≪ x/logx. Let f(x) increase to infinity arbitrarily slowly. We give a construction showing that and do not imply the Chebyshev bound.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-3, author = {Harold G. Diamond and Wen-Bin Zhang}, title = {Optimality of Chebyshev bounds for Beurling generalized numbers}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {259-275}, zbl = {1315.11086}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-3} }
Harold G. Diamond; Wen-Bin Zhang. Optimality of Chebyshev bounds for Beurling generalized numbers. Acta Arithmetica, Tome 161 (2013) pp. 259-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-3/