Optimality of Chebyshev bounds for Beurling generalized numbers
Harold G. Diamond ; Wen-Bin Zhang
Acta Arithmetica, Tome 161 (2013), p. 259-275 / Harvested from The Polish Digital Mathematics Library

If the counting function N(x) of integers of a Beurling generalized number system satisfies both 1x-2|N(x)-Ax|dx< and x-1(logx)(N(x)-Ax)=O(1), then the counting function π(x) of the primes of this system is known to satisfy the Chebyshev bound π(x) ≪ x/logx. Let f(x) increase to infinity arbitrarily slowly. We give a construction showing that 1|N(x)-Ax|x-2dx< and x-1(logx)(N(x)-Ax)=O(f(x)) do not imply the Chebyshev bound.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279414
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-3,
     author = {Harold G. Diamond and Wen-Bin Zhang},
     title = {Optimality of Chebyshev bounds for Beurling generalized numbers},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {259-275},
     zbl = {1315.11086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-3}
}
Harold G. Diamond; Wen-Bin Zhang. Optimality of Chebyshev bounds for Beurling generalized numbers. Acta Arithmetica, Tome 161 (2013) pp. 259-275. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-3/