We prove that the Lebesgue measure of the set of real points which are inhomogeneously Ψ-approximable by polynomials, where Ψ is not necessarily monotonic, is zero.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-2, author = {Natalia Budarina and Detta Dickinson}, title = {Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {243-257}, zbl = {1292.11086}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-2} }
Natalia Budarina; Detta Dickinson. Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function. Acta Arithmetica, Tome 161 (2013) pp. 243-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-2/