Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function
Natalia Budarina ; Detta Dickinson
Acta Arithmetica, Tome 161 (2013), p. 243-257 / Harvested from The Polish Digital Mathematics Library

We prove that the Lebesgue measure of the set of real points which are inhomogeneously Ψ-approximable by polynomials, where Ψ is not necessarily monotonic, is zero.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279096
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-2,
     author = {Natalia Budarina and Detta Dickinson},
     title = {Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {243-257},
     zbl = {1292.11086},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-2}
}
Natalia Budarina; Detta Dickinson. Inhomogeneous Diophantine approximation on integer polynomials with non-monotonic error function. Acta Arithmetica, Tome 161 (2013) pp. 243-257. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-3-2/