We prove an explicit bound for N(σ,T), the number of zeros of the Riemann zeta function satisfying ℜ𝔢 s ≥ σ and 0 ≤ ℑ𝔪 s ≤ T. This result provides a significant improvement to Rosser's bound for N(T) when used for estimating prime counting functions.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-6, author = {Habiba Kadiri}, title = {A zero density result for the Riemann zeta function}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {185-200}, zbl = {1310.11086}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-6} }
Habiba Kadiri. A zero density result for the Riemann zeta function. Acta Arithmetica, Tome 161 (2013) pp. 185-200. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-6/