The first author conjectured that Chebyshev-type prime bounds hold for Beurling generalized numbers provided that the counting function N(x) of the generalized integers satisfies the L¹ condition for some positive constant A. This conjecture was shown false by an example of Kahane. Here we establish the Chebyshev bounds using the L¹ hypothesis and a second integral condition.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-4, author = {Harold G. Diamond and Wen-Bin Zhang}, title = {Chebyshev bounds for Beurling numbers}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {143-157}, zbl = {1309.11069}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-4} }
Harold G. Diamond; Wen-Bin Zhang. Chebyshev bounds for Beurling numbers. Acta Arithmetica, Tome 161 (2013) pp. 143-157. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-4/