Multiplicative zero-one laws and metric number theory
Victor Beresnevich ; Alan Haynes ; Sanju Velani
Acta Arithmetica, Tome 161 (2013), p. 101-114 / Harvested from The Polish Digital Mathematics Library

We develop the classical theory of Diophantine approximation without assuming monotonicity or convexity. A complete 'multiplicative' zero-one law is established akin to the 'simultaneous' zero-one laws of Cassels and Gallagher. As a consequence we are able to establish the analogue of the Duffin-Schaeffer theorem within the multiplicative setup. The key ingredient is the rather simple but nevertheless versatile 'cross fibering principle'. In a nutshell it enables us to 'lift' zero-one laws to higher dimensions.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279708
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-1,
     author = {Victor Beresnevich and Alan Haynes and Sanju Velani},
     title = {Multiplicative zero-one laws and metric number theory},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {101-114},
     zbl = {1292.11085},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-1}
}
Victor Beresnevich; Alan Haynes; Sanju Velani. Multiplicative zero-one laws and metric number theory. Acta Arithmetica, Tome 161 (2013) pp. 101-114. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-2-1/