On the values of Artin L-series at s=1 and annihilation of class groups
Hugo Castillo ; Andrew Jones
Acta Arithmetica, Tome 161 (2013), p. 67-93 / Harvested from The Polish Digital Mathematics Library

Let L be a finite Galois CM-extension of a totally real field K. We show that the validity of an appropriate special case of the Equivariant Tamagawa Number Conjecture leads to a natural construction for each odd prime p of explicit elements in the (non-commutative) Fitting invariants over p[G] of a certain tame ray class group, and hence also in the analogous Fitting invariants of the p-primary part of the ideal class group of L. These elements involve the values at s=1 of the Artin L-series of characters of the group Gal(L/K). We also show that our results become unconditional under certain natural hypotheses on the extension L/K and prime p.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279125
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-1-5,
     author = {Hugo Castillo and Andrew Jones},
     title = {On the values of Artin L-series at s=1 and annihilation of class groups},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {67-93},
     zbl = {06189627},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-1-5}
}
Hugo Castillo; Andrew Jones. On the values of Artin L-series at s=1 and annihilation of class groups. Acta Arithmetica, Tome 161 (2013) pp. 67-93. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-1-5/