Normal integral bases and tameness conditions for Kummer extensions
Ilaria Del Corso ; Lorenzo Paolo Rossi
Acta Arithmetica, Tome 161 (2013), p. 1-23 / Harvested from The Polish Digital Mathematics Library

We present a detailed analysis of some properties of a general tamely ramified Kummer extension of number fields L/K. Our main achievement is a criterion for the existence of a normal integral basis for a general Kummer extension, which generalizes the existing results. Our approach also allows us to explicitly describe the Steinitz class of L/K and we get an easy criterion for this class to be trivial. In the second part of the paper we restrict to the particular case of tame Kummer extensions (ζm,a1m,...,anm)/(ζm) with ai. We prove that these extensions always have trivial Steinitz classes. We also give sufficient conditions for the existence of a normal integral basis for such extensions and an example showing that such conditions are sharp in the general case. A detailed study of the ramification produces explicit necessary and sufficient conditions on the elements ai for the extension to be tame.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279720
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-1-1,
     author = {Ilaria Del Corso and Lorenzo Paolo Rossi},
     title = {Normal integral bases and tameness conditions for Kummer extensions},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {1-23},
     zbl = {1284.11151},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-1-1}
}
Ilaria Del Corso; Lorenzo Paolo Rossi. Normal integral bases and tameness conditions for Kummer extensions. Acta Arithmetica, Tome 161 (2013) pp. 1-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa160-1-1/