The multiplicity of the zero at 1 of polynomials with constrained coefficients
Peter Borwein ; Tamás Erdélyi ; Géza Kós
Acta Arithmetica, Tome 161 (2013), p. 387-395 / Harvested from The Polish Digital Mathematics Library

For n ∈ ℕ, L > 0, and p ≥ 1 let κp(n,L) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P(x)=j=0najxj, |a0|L(j=1n|aj|p1/p,aj ∈ ℂ,such that (x-1)k divides P(x). For n ∈ ℕ and L > 0 let κ(n,L) be the largest possible value of k for which there is a polynomial P ≠ 0 of the form P(x)=j=0najxj, |a0|Lmax1jn|aj|, aj, such that (x-1)k divides P(x). We prove that there are absolute constants c₁ > 0 and c₂ > 0 such that c1(n/L)-1κ(n,L)c2(n/L) for every L ≥ 1. This complements an earlier result of the authors valid for every n ∈ ℕ and L ∈ (0,1]. Essentially sharp results on the size of κ₂(n,L) are also proved.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279367
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-4-7,
     author = {Peter Borwein and Tam\'as Erd\'elyi and G\'eza K\'os},
     title = {The multiplicity of the zero at 1 of polynomials with constrained coefficients},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {387-395},
     zbl = {1284.11054},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-4-7}
}
Peter Borwein; Tamás Erdélyi; Géza Kós. The multiplicity of the zero at 1 of polynomials with constrained coefficients. Acta Arithmetica, Tome 161 (2013) pp. 387-395. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-4-7/