Let 1 < k < 33/29. We prove that if λ₁, λ₂ and λ₃ are non-zero real numbers, not all of the same sign and such that λ₁/λ₂ is irrational, and ϖ is any real number, then for any ε > 0 the inequality has infinitely many solutions in prime variables p₁, p₂, p₃.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-4-4, author = {Alessandro Languasco and Alessandro Zaccagnini}, title = {On a ternary Diophantine problem with mixed powers of primes}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {345-362}, zbl = {1330.11063}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-4-4} }
Alessandro Languasco; Alessandro Zaccagnini. On a ternary Diophantine problem with mixed powers of primes. Acta Arithmetica, Tome 161 (2013) pp. 345-362. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-4-4/