Explicit estimates for the summatory function of Λ(n)/n from the one of Λ(n)
Olivier Ramaré
Acta Arithmetica, Tome 161 (2013), p. 113-122 / Harvested from The Polish Digital Mathematics Library

We prove that the error term nxΛ(n)/n-logx+γ differs from (ψ(x)-x)/x by a well controlled function. We deduce very precise numerical results from the formula obtained.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279429
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-2-2,
     author = {Olivier Ramar\'e},
     title = {Explicit estimates for the summatory function of $\Lambda$(n)/n from the one of $\Lambda$(n)},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {113-122},
     zbl = {06164549},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-2-2}
}
Olivier Ramaré. Explicit estimates for the summatory function of Λ(n)/n from the one of Λ(n). Acta Arithmetica, Tome 161 (2013) pp. 113-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-2-2/