Skolem conjectured that the "power sum" A(n) = λ₁α₁ⁿ + ⋯ + λₘαₘⁿ satisfies a certain local-global principle. We prove this conjecture in the case when the multiplicative group generated by α₁,...,αₘ is of rank 1.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-2-1, author = {Boris Bartolome and Yuri Bilu and Florian Luca}, title = {On the exponential local-global principle}, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {101-111}, zbl = {1330.11019}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-2-1} }
Boris Bartolome; Yuri Bilu; Florian Luca. On the exponential local-global principle. Acta Arithmetica, Tome 161 (2013) pp. 101-111. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-2-1/