On the quartic character of quadratic units
Zhi-Hong Sun
Acta Arithmetica, Tome 161 (2013), p. 89-100 / Harvested from The Polish Digital Mathematics Library

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of integers m and n. Let p be a prime of the form 4k+1 and p = c²+d² with c,d ∈ ℤ, d=2rd and c ≡ d₀ ≡ 1 (mod 4). In the paper we determine (b+(b²+4α)/2)(p-1)/4)(modp) for p = x²+(b²+4α)y² (b,x,y ∈ ℤ, 2∤b), and (2a+4a²+1)(p-1)/4(modp) for p = x²+(4a²+1)y² (a,x,y∈ℤ) on the condition that (c,x+d) = 1 or (d₀,x+c) = 1. As applications we obtain the congruence for U(p-1)/4(modp) and the criterion for p|U(p-1)/8 (if p ≡ 1 (mod 8)), where Uₙ is the Lucas sequence given by U₀ = 0, U₁ = 1 and Un+1=bU+Un-1(n1), and b ≢ 2 (mod 4). Hence we partially solve some conjectures that we posed in 2009.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279410
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-5,
     author = {Zhi-Hong Sun},
     title = {On the quartic character of quadratic units},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {89-100},
     zbl = {1287.11005},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-5}
}
Zhi-Hong Sun. On the quartic character of quadratic units. Acta Arithmetica, Tome 161 (2013) pp. 89-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-5/