Congruences for q[p/8](modp)
Zhi-Hong Sun
Acta Arithmetica, Tome 161 (2013), p. 1-25 / Harvested from The Polish Digital Mathematics Library

Let ℤ be the set of integers, and let (m,n) be the greatest common divisor of the integers m and n. Let p ≡ 1 (mod 4) be a prime, q ∈ ℤ, 2 ∤ q and p=c²+d²=x²+qy² with c,d,x,y ∈ ℤ and c ≡ 1 (mod 4). Suppose that (c,x+d)=1 or (d,x+c) is a power of 2. In this paper, by using the quartic reciprocity law, we determine q[p/8](modp) in terms of c,d,x and y, where [·] is the greatest integer function. Hence we partially solve some conjectures posed in our previous two papers.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279455
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-1,
     author = {Zhi-Hong Sun},
     title = {Congruences for $q^{[p/8]}(mod p)$
            },
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {1-25},
     zbl = {1292.11007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-1}
}
Zhi-Hong Sun. Congruences for $q^{[p/8]}(mod p)$
            . Acta Arithmetica, Tome 161 (2013) pp. 1-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa159-1-1/