Let A and B be finite sets in a commutative group. We bound |A+hB| in terms of |A|, |A+B| and h. We provide a submultiplicative upper bound that improves on the existing bound of Imre Ruzsa by inserting a factor that decreases with h.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-4-1,
author = {Giorgis Petridis},
title = {Upper bounds on the cardinality of higher sumsets},
journal = {Acta Arithmetica},
volume = {161},
year = {2013},
pages = {299-319},
zbl = {1307.11019},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-4-1}
}
Giorgis Petridis. Upper bounds on the cardinality of higher sumsets. Acta Arithmetica, Tome 161 (2013) pp. 299-319. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-4-1/