If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then has infinite rank. If E is an elliptic curve in Legendre form, y² = x(x-1)(x-λ), where ℚ(λ) is a cubic field, then has infinite rank. If λ ∈ K has a minimal polynomial P(x) of degree 4 and v² = P(u) is an elliptic curve of positive rank over ℚ, we prove that y² = x(x-1)(x-λ) has infinite rank over .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-3, author = {Bo-Hae Im and Michael Larsen}, title = {Infinite rank of elliptic curves over $$\mathbb{Q}$^{ab}$ }, journal = {Acta Arithmetica}, volume = {161}, year = {2013}, pages = {49-59}, zbl = {1272.11077}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-3} }
Bo-Hae Im; Michael Larsen. Infinite rank of elliptic curves over $ℚ^{ab}$ . Acta Arithmetica, Tome 161 (2013) pp. 49-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-3/