Infinite rank of elliptic curves over ab
Bo-Hae Im ; Michael Larsen
Acta Arithmetica, Tome 161 (2013), p. 49-59 / Harvested from The Polish Digital Mathematics Library

If E is an elliptic curve defined over a quadratic field K, and the j-invariant of E is not 0 or 1728, then E(ab) has infinite rank. If E is an elliptic curve in Legendre form, y² = x(x-1)(x-λ), where ℚ(λ) is a cubic field, then E(Kab) has infinite rank. If λ ∈ K has a minimal polynomial P(x) of degree 4 and v² = P(u) is an elliptic curve of positive rank over ℚ, we prove that y² = x(x-1)(x-λ) has infinite rank over Kab.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279299
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-3,
     author = {Bo-Hae Im and Michael Larsen},
     title = {Infinite rank of elliptic curves over $$\mathbb{Q}$^{ab}$
            },
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {49-59},
     zbl = {1272.11077},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-3}
}
Bo-Hae Im; Michael Larsen. Infinite rank of elliptic curves over $ℚ^{ab}$
            . Acta Arithmetica, Tome 161 (2013) pp. 49-59. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-3/