Bounded Lüroth expansions: applying Schmidt games where infinite distortion exists
Bill Mance ; Jimmy Tseng
Acta Arithmetica, Tome 161 (2013), p. 33-47 / Harvested from The Polish Digital Mathematics Library

We show that the set of numbers with bounded Lüroth expansions (or bounded Lüroth series) is winning and strong winning. From either winning property, it immediately follows that the set is dense, has full Hausdorff dimension, and satisfies a countable intersection property. Our result matches the well-known analogous result for bounded continued fraction expansions or, equivalently, badly approximable numbers. We note that Lüroth expansions have a countably infinite Markov partition, which leads to the notion of infinite distortion (in the sense of Markov partitions).

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:278948
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-2,
     author = {Bill Mance and Jimmy Tseng},
     title = {Bounded L\"uroth expansions: applying Schmidt games where infinite distortion exists},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {33-47},
     zbl = {1272.11095},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-2}
}
Bill Mance; Jimmy Tseng. Bounded Lüroth expansions: applying Schmidt games where infinite distortion exists. Acta Arithmetica, Tome 161 (2013) pp. 33-47. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa158-1-2/