On the spinor zeta functions problem: higher power moments of the Riesz mean
Haiyan Wang
Acta Arithmetica, Tome 161 (2013), p. 231-248 / Harvested from The Polish Digital Mathematics Library

Let F be a Siegel cusp form of integral weight k on the Siegel modular group Sp₂(ℤ) of genus 2. The coefficients of the spinor zeta function ZF(s) are denoted by cₙ. Let Dρ(x;ZF) be the Riesz mean of cₙ. Kohnen and Wang obtained the truncated Voronoï-type formula for Dρ(x;ZF) under the Ramanujan-Petersson conjecture. In this paper, we study the higher power moments of Dρ(x;ZF), and then derive an asymptotic formula for the hth (h=3,4,5) power moments of D(x;ZF) by using Ivić’s large value arguments and other techniques.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:279341
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-aa157-3-2,
     author = {Haiyan Wang},
     title = {On the spinor zeta functions problem: higher power moments of the Riesz mean},
     journal = {Acta Arithmetica},
     volume = {161},
     year = {2013},
     pages = {231-248},
     zbl = {1321.11104},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa157-3-2}
}
Haiyan Wang. On the spinor zeta functions problem: higher power moments of the Riesz mean. Acta Arithmetica, Tome 161 (2013) pp. 231-248. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-aa157-3-2/