The definition and some existence theorems for stochastic differential inclusion dZₜ ∈ F(Zₜ)dXₜ, where F and X are set valued stochastic processes, are given.
@article{bwmeta1.element.bwnjournal-article-div19i1-2n9bwm, author = {Micha\l\ Kisielewicz}, title = {Stochastic differential inclusions}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {19}, year = {1999}, pages = {123-129}, zbl = {0979.93109}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div19i1-2n9bwm} }
Michał Kisielewicz. Stochastic differential inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 19 (1999) pp. 123-129. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div19i1-2n9bwm/
[000] [1] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. (1991). | Zbl 0731.49001
[001] [2] E. Michta, On stochastic inclusions with multivalued integrators, Stoch. Anal. Appl. (submitted to print). | Zbl 1018.60042
[002] [3] Ph. Proter, Stochastic Integration and Differential Equations, Springer-Verlag 1990.