In this paper we investigate the existence of mild solutions on an unbounded real interval to first order initial value problems for a class of differential inclusions in Banach spaces. We shall make use of a theorem of Ma, which is an extension to multivalued maps on locally convex topological spaces of Schaefer's theorem.
@article{bwmeta1.element.bwnjournal-article-div19i1-2n8bwm, author = {Mouffak Benchohra}, title = {Existence of mild solutions on infinite intervals to first order initial value problems for a class of differential inclusions in banach spaces}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {19}, year = {1999}, pages = {111-121}, zbl = {0960.34046}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div19i1-2n8bwm} }
Mouffak Benchohra. Existence of mild solutions on infinite intervals to first order initial value problems for a class of differential inclusions in banach spaces. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 19 (1999) pp. 111-121. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div19i1-2n8bwm/
[000] [1] E.P. Avgerinov and N.S. Papageorgiou, On quasilinear evolution inclusions, Glas. Mat. Ser. III 28 (48) No. 1 (1993), 35-52. | Zbl 0801.34016
[001] [2] M. Benchohra and A. Boucherif, An existence result on an unbounded real interval to first order initial value problems for differential inclusions in Banach spaces, Nonlinear Differential Equations, to appear. | Zbl 1054.34099
[002] [3] M. Benchohra and A. Boucherif, Existence of solutions on infinite intervals to second order initial value problems for a class of differential inclusions in Banach spaces, Dynamic Systems and Applications, to appear. | Zbl 0974.34059
[003] [4] K. Deimling, Multivalued Differential Equations, Walter de Gruyter, Berlin-New York 1992.
[004] [5] M. Furi and P. Pera, A continuation method on locally convex spaces and applications to ordinary differential equations on noncompact intervals, Ann. Polon. Math. 47 (1987), 331-346. | Zbl 0656.47052
[005] [6] J.A. Goldstein, Semigroups of Linear Operators and Applications, Oxford, New York 1985. | Zbl 0592.47034
[006] [7] S. Heikkila and V. Lakshmikantham, Monotone Iterative Techniques for Discontinuous Nonlinear Differential Equations, Marcel Dekker, New York 1994. | Zbl 0804.34001
[007] [8] S. Heikkila and V. Lakshmikantham, On mild solutions of first order discontinuous semilinear differential equations in Banach spaces, Appl. Anal. 56 (1-2) (1995), 131-146. | Zbl 0832.34054
[008] [9] G. Ladas and V. Lakshmikantham, Differential Equations in Abstract Spaces, Academic Press, New York, London 1972.
[009] [10] V. Lakshmikantham and S. Leela, Existence and monotone method for periodic solutions of first order differential equations, J. Math. Anal. Appl. 91 (1983), 237-243. | Zbl 0525.34031
[010] [11] A. Lasota and Z. Opial, An application of the Kakutani-Ky-Fan theorem in the theory of ordinary differential equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 13 (1965), 781-786. | Zbl 0151.10703
[011] [12] T.W. Ma, Topological degrees for set-valued compact vector fields in locally convex spaces, Dissertationess Math. 92 (1972), 1-43.
[012] [13] R.H. Martin, Jr., Nonlinear perturbations of linear evolution systems, J. Math. Soc. Japan 29 (2) (1977), 233-252. | Zbl 0375.34038
[013] [14] N.S. Papageorgiou, Mild solutions of semilinear evolution inclusions, Indian J. Pure Appl. Math. 26 (3) (1995), 189-216. | Zbl 0840.49004
[014] [15] N.S. Papageorgiou, Boundary value problems for evolution inclusions, Comment. Math. Univ. Carol. 29 (1988), 355-363. | Zbl 0696.35074
[015] [16] H. Schaefer, Uber die methode der a priori schranken, Math. Ann. 129, (1955), 415-416. | Zbl 0064.35703
[016] [17] K. Yosida, Functional Analysis, 6^{th} edn. Springer-Verlag, Berlin 1980.
[017] [18] S. Zaidman, Functional Analysis and Differential Equations in Abstract Spaces, Chapman & Hall/CRC, 1999. | Zbl 0937.47049