In this paper, using the properties of the Henstock-Kurzweil integral and corresponding theorems, we prove the existence theorem for the equation x' = f(t,x) and inclusion x' ∈ F(t,x) in a Banach space, where f is Henstock-Kurzweil integrable and satisfies some conditions.
@article{bwmeta1.element.bwnjournal-article-div19i1-2n3bwm, author = {Ireneusz Kubiaczyk and Aneta Sikorska}, title = {Differential equations in banach space and henstock-kurzweil integrals}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {19}, year = {1999}, pages = {35-43}, zbl = {0962.34043}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div19i1-2n3bwm} }
Ireneusz Kubiaczyk; Aneta Sikorska. Differential equations in banach space and henstock-kurzweil integrals. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 19 (1999) pp. 35-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div19i1-2n3bwm/
[000] [1] A. Ambrosetti, Un teorema di esistenza per le equazioni differenziali negli spazi di Banach, Rend. Sem. Univ. Padova 39 (1967), 349-360.
[001] [2] Z. Artstein, Topological dynamics of ordinary differential equations and Kurzweil, equations, J. Differential Equations 23 (1977), 224-243. | Zbl 0353.34044
[002] [3] J. Banaś and K. Goebel, Measures of Noncompactness in Banach Spaces, Lecture Notes in Pure and Appl. Math., Mercel Dekker 60 (1980), New York and Basel. | Zbl 0441.47056
[003] [4] S.S. Cao, The Henstock integral for Banach valued functions, SEA Bull. Math. 16 (1992), 36-40.
[004] [5] T.S. Chew, On Kurzweil generalized ordinary differential equations, J. Differential Equations 76 (1988), 286-293. | Zbl 0666.34041
[005] [6] T.S. Chew and F. Flovdelija, On x' = f(t,x) and Henstock-Kurzweil integrals, Differential and Integral Equations 4 (1991), 861-868. | Zbl 0733.34004
[006] [7] K. Goebel and W. Rzymowski, An existence theorem for the equations x' = f(t,x) in Banach space, Bulletin de l'Academie Polonaise des Sciences 7 (1970). | Zbl 0202.10003
[007] [8] R.A. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Providence, Rhode Island 1994. | Zbl 0807.26004
[008] [9] P. Hartman, Ordinary Differential Equations, New York 1964. | Zbl 0125.32102
[009] [10] H.P. Heinz, On the behaviour of measures of noncompactness with respect to differentation and integration of vector-valued functions, Nonlinear Anal. 7 (1983), 1351-1371. | Zbl 0528.47046
[010] [11] R. Henstock, The General Theory of Integration, Oxford Mathematical Monographs, Clavendon Press, Oxford 1991. | Zbl 0745.26006
[011] [12] H. Mönch, Boundary value problems for nonlinear differential equations of second order in Banach spaces, Nonlinear Analysis 4 (1980), 985-999. | Zbl 0462.34041
[012] [13] S. Nakanishi, The Henstock integral for functions with values in nuclear spaces and the Henstock lemma, Journal of Mathematical Study 27 (1994), 133-141. | Zbl 0927.26011
[013] [14] S. Schwabik, Generalized Ordinary Differential Equations, World Scientific, Singapore 1992. | Zbl 0781.34003