Coincidence theorems for set-valued maps with g-kkm property on generalized convex space
Lai-Jiu Lin ; Ching-Jung Ko ; Sehie Park
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 18 (1998), p. 69-85 / Harvested from The Polish Digital Mathematics Library

In this paper, a set-valued mapping with G-KKM property is defined and a generalization of minimax theorem for set-valued maps with G-KKM property on generalized convex space is established. As a consequence of this results we verify the coincidence theorem for set-valued maps with G-KKM property on G-convex space. Finally, we apply our results to the best approximation problem and fixed point problem.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:275962
@article{bwmeta1.element.bwnjournal-article-div18i1-2n6bwm,
     author = {Lai-Jiu Lin and Ching-Jung Ko and Sehie Park},
     title = {Coincidence theorems for set-valued maps with g-kkm property on generalized convex space},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {18},
     year = {1998},
     pages = {69-85},
     zbl = {0941.47044},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div18i1-2n6bwm}
}
Lai-Jiu Lin; Ching-Jung Ko; Sehie Park. Coincidence theorems for set-valued maps with g-kkm property on generalized convex space. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 18 (1998) pp. 69-85. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div18i1-2n6bwm/

[000] [1] J.P. Aubin., A Cellina, Differential Inclusions, Spriger-Verlag, Berlin Heidelberg 1984. | Zbl 0538.34007

[001] [2] T.H. Chang and C.L. Yen, KKM propperty and fixed point theorems, J. Math. Anal. Appl. to appear.

[002] [3] A. Granas and F.C. Liu, Coincidences for set-valued maps and minimax inequalities, J. Math. Pures Appl. 65 (1986), 119-148. | Zbl 0659.49007

[003] [4] C. Horvath, Some results on multivalued mappings and inequalities without convexity in nonlinear and convex analysis, (Eds. B.L. Lin and S. Simons), pp. 99-106 (Marcel Dekker, 1989).

[004] [5] L.J. Lin, A generalization of Ky Fan matching theorem to G-convex space for admissible multifunction, to appear.

[005] [6] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl. 97 (1983), 151-201. | Zbl 0527.47037

[006] [7] J. Von Neumann, Ueler ein okonomisches gleichungssystm wnd eine verallemeineruny des biorwerscher Fixpwnktsatzes, Eegebnisse eines mathematischen kollogiws, 8 (1935), 73-83.

[007] [8] S. Park, Acyclic maps, minimax inequality and fixed points, Nonlinear Analysis, Theory. Methods and Applications 24 (1995), 1549-1554. | Zbl 0858.47033

[008] [9] S. Park and H. Kim, Coincidence theorems for admissible multifunctions on generalized convex space, J. Math. Anal. Appl. (1995).

[009] [10] S. Park, Foundations of the KKM theory via coincidences of composites of upper semicontinuous maps, J. Korean. Math. Soc. 31 (1994), 493-519. | Zbl 0829.49002

[010] [11] S. Park and H. Kim, Foundations of the KKM theory on generalized convex spaces, J. Math. Anal. Appl. 209 (1997), 551-571. | Zbl 0873.54048

[011] [12] S. Park, S.P. Singh and B. Watson, Some fixed point theorems for composites of acyclic maps, Proc. Amer. Math. Soc. 121 (1994), 1151-1158. | Zbl 0806.47053

[012] [13] S. Park and K.S. Jeong, A general coincidence theorem on contractible space, to appear. | Zbl 0876.47038