Random fixed points for a certain class of asymptotically regular mappings
Balwant Singh Thakur ; Jong Soo Jung ; Daya Ram Sahu ; Yeol Je Cho
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 18 (1998), p. 27-43 / Harvested from The Polish Digital Mathematics Library

Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition: For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1, ⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦ ≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦ + cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦, where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in Lp spaces, in Hardy spaces Hp and in Sobolev spaces Hk,p for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.

Publié le : 1998-01-01
EUDML-ID : urn:eudml:doc:275963
@article{bwmeta1.element.bwnjournal-article-div18i1-2n3bwm,
     author = {Balwant Singh Thakur and Jong Soo Jung and Daya Ram Sahu and Yeol Je Cho},
     title = {Random fixed points for a certain class of asymptotically regular mappings},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {18},
     year = {1998},
     pages = {27-43},
     zbl = {0944.47036},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div18i1-2n3bwm}
}
Balwant Singh Thakur; Jong Soo Jung; Daya Ram Sahu; Yeol Je Cho. Random fixed points for a certain class of asymptotically regular mappings. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 18 (1998) pp. 27-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div18i1-2n3bwm/

[000] [1] J. Barros-Neto, An Introduction to the Theory of Distribution, Dekker, New York 1973. | Zbl 0273.46026

[001] [2] I. Beg and N. Shahzad, Random fixed points of random multivalued operators on Polish spaces, Nonlinear Anal. TMA 29 (7) (1993), 835-847. | Zbl 0793.54031

[002] [3] A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645. | Zbl 0339.60061

[003] [4] A.T. Bharucha-Reid, Random Integral Equations, Academic Press, New York and London 1977.

[004] [5] Gh. Bocsan, A general random fixed point theorem and applications to random equations, Rev. Roumaine Math. Pure Appl. 26 (1981), 375-379. | Zbl 0473.60057

[005] [6] W.L. Bynum, Normal structure coefficient for Banach space, Pacific J. Math. 86 (1980), 427-436. | Zbl 0442.46018

[006] [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin 1977. | Zbl 0346.46038

[007] [8] S.S. Chang, Random fixed point theorems for continuous random operators, Pacific J. Math. 105 (1983), 21-31. | Zbl 0512.47044

[008] [9] J. Danés, On densifying and related mappings and their applications in nonlinear functional analysis, Theory of Nonlinear Operators. Proc. Summer School, Oct. 1972 GDR, Akademie-Verlag, Berlin 1974, 15-56.

[009] [10] N. Dunford and J. Schwarz, Linear Operators, Vol. I Interscience, New York 1958.

[010] [11] W.L. Duren, Theory of H^p}HUK-spaces, Academic Press, New York 1970.

[011] [12] H.W. Engl, Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. | Zbl 0355.47035

[012] [13] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1) (1972), 171-174. | Zbl 0256.47045

[013] [14] J. Górnicki, Fixed point theorems for asymptotically regular mappings in L^p}HUK spaces, Nonlinear Anal. 17 (1991), 153-159. | Zbl 0758.47044

[014] [15] J. Górnicki, Fixed points of asymptotically regular mappings, Math. Slovaca 43 (3) (1993), 327-336. | Zbl 0806.47049

[015] [16] C.J. Himmellberg, Measurable relations, Fund. Math. 87 (1975), 53-72.

[016] [17] S. Itoh, A random fixed point theorem for a multivalued contraction, Pacific J. Math. 68 (1977), 85-90. | Zbl 0335.54036

[017] [18] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. | Zbl 0407.60069

[018] [19] T.C. Lim, On some L^p}HUK inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. | Zbl 0744.41015

[019] [20] T.C. Lim, H.K. Xu and Z.B. Xu, An L^p}HUK inequalities and its applications to fixed point theory and approximation theory, Progress in Approximation Theory, Academic Press (1991), 609-624.

[020] [21] T.C. Lin, Random approximations and random fixed point theorems for non-self maps, Proc. Amer. Math. Soc. 103 (1988), 1129-1135. | Zbl 0676.47041

[021] [22] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II - Function Spaces, Springer-Verlag, New York, Berlin 1979. | Zbl 0403.46022

[022] [23] A. Nowak, Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. Math. 34 (1986), 487-494. | Zbl 0617.60059

[023] [24] N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 32 (1987), 507-514. | Zbl 0606.60058

[024] [25] N.S. Papageorgiou, Deterministic and random fixed point theorems for single valued and multivalued functions, Rev. Roumaine Math. Pure Appl. 32 (1989), 53-61.

[025] [26] S.A. Pichugov, Jung's constant of the space L^p}HUK, (Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354). | Zbl 0644.46016

[026] [27] S. Prus, On Bynum's fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modens 38 (1990), 535-545. | Zbl 0724.46020

[027] [28] S. Prus, Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo 2 XL (1991), 128-135.

[028] [29] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. | Zbl 0617.41046

[029] [30] L.E. Rybinski, Random fixed points and viable random solutions of functional differential inclusions, J. Math. Anal. Appl. 142 (1989), 53-61. | Zbl 0681.60056

[030] [31] V.M. Sehgal and S.P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94. | Zbl 0607.47057

[031] [32] V.M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), 425-429.

[032] [33] R. Smarzewski, Strongly unique best approximations in Banach spaces II, J. Approx. Theory 51 (1987), 202-217. | Zbl 0657.41022

[033] [34] R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. | Zbl 0716.46023

[034] [35] K.K. Tan and X.Z. Yuan, Some random fixed point theorems, Fixed Point Theory and Applications (Edited by K. K. Tan), World Scientific, Singapore (1992), 334-345.

[035] [36] K.K. Tan and X.Z. Yuan, On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 (1993), 849-856. | Zbl 0801.47044

[036] [37] H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990), 395-400. | Zbl 0716.47029

[037] [38] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA 16 (1991), 1127-1138. | Zbl 0757.46033

[038] [39] H.K. Xu, A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space, Proc. Amer. Math. Soc. 117 (1993), 1089-1092. | Zbl 0808.47044

[039] [40] H.K. Xu, Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1301-1311. | Zbl 0864.47051

[040] [41] C. Zalinescu, On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. | Zbl 0519.49010