Let (Ω, σ) be a measurable space and K a nonempty bounded closed convex separable subset of a p-uniformly convex Banach space E for p > 1. We prove a random fixed point theorem for a class of mappings T:Ω×K ∪ K satisfying the condition: For each x, y ∈ K, ω ∈ Ω and integer n ≥ 1, ⃦Tⁿ(ω,x) - Tⁿ(ω,y) ⃦ ≤ aₙ(ω)· ⃦x - y ⃦ + bₙ(ω) ⃦x -Tⁿ(ω,x) ⃦ + ⃦y - Tⁿ(ω,y) ⃦ + cₙ(ω) ⃦x - Tⁿ(ω,y) ⃦ + ⃦y - Tⁿ(ω,x) ⃦, where aₙ, bₙ, cₙ: Ω → [0, ∞) are functions satisfying certain conditions and Tⁿ(ω,x) is the value at x of the n-th iterate of the mapping T(ω,·). Further we establish some random fixed point theorems for these mappings in Hilbert spaces, in spaces, in Hardy spaces and in Sobolev spaces for 1 < p < ∞ and k ≥ 0. As a consequence of our main result, we extend and randomize the corresponding deterministic ones of Górnicki [14, 15] and others.
@article{bwmeta1.element.bwnjournal-article-div18i1-2n3bwm, author = {Balwant Singh Thakur and Jong Soo Jung and Daya Ram Sahu and Yeol Je Cho}, title = {Random fixed points for a certain class of asymptotically regular mappings}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {18}, year = {1998}, pages = {27-43}, zbl = {0944.47036}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div18i1-2n3bwm} }
Balwant Singh Thakur; Jong Soo Jung; Daya Ram Sahu; Yeol Je Cho. Random fixed points for a certain class of asymptotically regular mappings. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 18 (1998) pp. 27-43. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div18i1-2n3bwm/
[000] [1] J. Barros-Neto, An Introduction to the Theory of Distribution, Dekker, New York 1973. | Zbl 0273.46026
[001] [2] I. Beg and N. Shahzad, Random fixed points of random multivalued operators on Polish spaces, Nonlinear Anal. TMA 29 (7) (1993), 835-847. | Zbl 0793.54031
[002] [3] A.T. Bharucha-Reid, Fixed point theorems in probabilistic analysis, Bull. Amer. Math. Soc. 82 (1976), 641-645. | Zbl 0339.60061
[003] [4] A.T. Bharucha-Reid, Random Integral Equations, Academic Press, New York and London 1977.
[004] [5] Gh. Bocsan, A general random fixed point theorem and applications to random equations, Rev. Roumaine Math. Pure Appl. 26 (1981), 375-379. | Zbl 0473.60057
[005] [6] W.L. Bynum, Normal structure coefficient for Banach space, Pacific J. Math. 86 (1980), 427-436. | Zbl 0442.46018
[006] [7] C. Castaing and M. Valadier, Convex Analysis and Measurable Multifunctions, Springer-Verlag, Berlin 1977. | Zbl 0346.46038
[007] [8] S.S. Chang, Random fixed point theorems for continuous random operators, Pacific J. Math. 105 (1983), 21-31. | Zbl 0512.47044
[008] [9] J. Danés, On densifying and related mappings and their applications in nonlinear functional analysis, Theory of Nonlinear Operators. Proc. Summer School, Oct. 1972 GDR, Akademie-Verlag, Berlin 1974, 15-56.
[009] [10] N. Dunford and J. Schwarz, Linear Operators, Vol. I Interscience, New York 1958.
[010] [11] W.L. Duren, Theory of H^p}HUK-spaces, Academic Press, New York 1970.
[011] [12] H.W. Engl, Random fixed point theorems for multivalued mappings, Pacific J. Math. 76 (1978), 351-360. | Zbl 0355.47035
[012] [13] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35 (1) (1972), 171-174. | Zbl 0256.47045
[013] [14] J. Górnicki, Fixed point theorems for asymptotically regular mappings in L^p}HUK spaces, Nonlinear Anal. 17 (1991), 153-159. | Zbl 0758.47044
[014] [15] J. Górnicki, Fixed points of asymptotically regular mappings, Math. Slovaca 43 (3) (1993), 327-336. | Zbl 0806.47049
[015] [16] C.J. Himmellberg, Measurable relations, Fund. Math. 87 (1975), 53-72.
[016] [17] S. Itoh, A random fixed point theorem for a multivalued contraction, Pacific J. Math. 68 (1977), 85-90. | Zbl 0335.54036
[017] [18] S. Itoh, Random fixed point theorems with an application to random differential equations in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. | Zbl 0407.60069
[018] [19] T.C. Lim, On some L^p}HUK inequalities in best approximation theory, J. Math. Anal. Appl. 154 (1991), 523-528. | Zbl 0744.41015
[019] [20] T.C. Lim, H.K. Xu and Z.B. Xu, An L^p}HUK inequalities and its applications to fixed point theory and approximation theory, Progress in Approximation Theory, Academic Press (1991), 609-624.
[020] [21] T.C. Lin, Random approximations and random fixed point theorems for non-self maps, Proc. Amer. Math. Soc. 103 (1988), 1129-1135. | Zbl 0676.47041
[021] [22] J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces II - Function Spaces, Springer-Verlag, New York, Berlin 1979. | Zbl 0403.46022
[022] [23] A. Nowak, Applications of random fixed point theorems in the theory of generalized random differential equations, Bull. Polish Acad. Sci. Math. 34 (1986), 487-494. | Zbl 0617.60059
[023] [24] N.S. Papageorgiou, Random fixed point theorems for measurable multifunctions in Banach spaces, Proc. Amer. Math. Soc. 32 (1987), 507-514. | Zbl 0606.60058
[024] [25] N.S. Papageorgiou, Deterministic and random fixed point theorems for single valued and multivalued functions, Rev. Roumaine Math. Pure Appl. 32 (1989), 53-61.
[025] [26] S.A. Pichugov, Jung's constant of the space L^p}HUK, (Russian), Mat. Zametki 43 (1988), 604-614. (Translation: Math. Notes 43 (1988), 348-354). | Zbl 0644.46016
[026] [27] S. Prus, On Bynum's fixed point theorem, Atti. Sem. Mat. Fis. Univ. Modens 38 (1990), 535-545. | Zbl 0724.46020
[027] [28] S. Prus, Some estimates for the normal structure coefficient in Banach spaces, Rend. Circ. Mat. Palermo 2 XL (1991), 128-135.
[028] [29] B. Prus and R. Smarzewski, Strongly unique best approximations and centers in uniformly convex spaces, J. Math. Anal. Appl. 121 (1987), 10-21. | Zbl 0617.41046
[029] [30] L.E. Rybinski, Random fixed points and viable random solutions of functional differential inclusions, J. Math. Anal. Appl. 142 (1989), 53-61. | Zbl 0681.60056
[030] [31] V.M. Sehgal and S.P. Singh, On random approximations and a random fixed point theorem for set valued mappings, Proc. Amer. Math. Soc. 95 (1985), 91-94. | Zbl 0607.47057
[031] [32] V.M. Sehgal and C. Waters, Some random fixed point theorems for condensing operators, Proc. Amer. Math. Soc. 90 (1984), 425-429.
[032] [33] R. Smarzewski, Strongly unique best approximations in Banach spaces II, J. Approx. Theory 51 (1987), 202-217. | Zbl 0657.41022
[033] [34] R. Smarzewski, On the inequality of Bynum and Drew, J. Math. Anal. Appl. 150 (1990), 146-150. | Zbl 0716.46023
[034] [35] K.K. Tan and X.Z. Yuan, Some random fixed point theorems, Fixed Point Theory and Applications (Edited by K. K. Tan), World Scientific, Singapore (1992), 334-345.
[035] [36] K.K. Tan and X.Z. Yuan, On deterministic and random fixed points, Proc. Amer. Math. Soc. 119 (1993), 849-856. | Zbl 0801.47044
[036] [37] H.K. Xu, Some random fixed point theorems for condensing and nonexpansive operators, Proc. Amer. Math. Soc. 110 (1990), 395-400. | Zbl 0716.47029
[037] [38] H.K. Xu, Inequalities in Banach spaces with applications, Nonlinear Anal. TMA 16 (1991), 1127-1138. | Zbl 0757.46033
[038] [39] H.K. Xu, A random fixed point theorem for multivalued nonexpansive operators in a uniformly convex Banach space, Proc. Amer. Math. Soc. 117 (1993), 1089-1092. | Zbl 0808.47044
[039] [40] H.K. Xu, Random fixed point theorems for nonlinear uniformly Lipschitzian mappings, Nonlinear Anal. 26 (1996), 1301-1311. | Zbl 0864.47051
[040] [41] C. Zalinescu, On uniformly convex function, J. Math. Anal. Appl. 95 (1983), 344-374. | Zbl 0519.49010