In this paper we extend the notion of I⁰-continuity and uniform I⁰-continuity from [2] to set-valued operators. Using these properties, we prove some results on continuous dependence of the fixed points set for families of contractive type set-valued operators.
@article{bwmeta1.element.bwnjournal-article-div17i1-2n2bwm, author = {Eduard Kirr and Adrian Petruel}, title = {Continuous dependence on parameters of the fixed points set for some set-valued operators}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {17}, year = {1997}, pages = {29-41}, zbl = {0904.47042}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div17i1-2n2bwm} }
Eduard Kirr; Adrian Petruel. Continuous dependence on parameters of the fixed points set for some set-valued operators. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 17 (1997) pp. 29-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div17i1-2n2bwm/
[000] [1] E. Barcz, Some fixed points theorems for multi-valued mappings, Demonstratio Math. Vol. XVI, 3 (1983), 725-743. | Zbl 0574.54045
[001] [2] I. Del Prete and C. Esposito, Elementi uniti di transformazioni funzionali e teoremi di dipendenza continua, Rend. Circ. Mat. di Palermo serie 2, 23 (1974), 187-205. | Zbl 0321.54027
[002] [3] J.Dugundji, Topology, Allyn and Bacon Inc., Boston, 1966.
[003] [4] E. Kirr, On continuous dependence on parameters of the fixed point set for some classes of metric operators, to appear. | Zbl 0904.47042
[004] [5] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ., Dordrecht, 1991. | Zbl 0731.49001
[005] [6] A.I. Rus, Generalized contraction, Univ. Cluj-Napoca Preprint, 3 (1983), 1-130.
[006] [7] R.E. Smithson, Fixed points for contractive multifunctions, Proc. A.M.S., 27 (1971), 192-194. | Zbl 0213.24501
[007] [8] R. Wegrzyk, Fixed-point theorems for multi-valued functions and their applications to functional equations, Diss. Math., 201 (1982), 1-31. | Zbl 0521.54034