Existence theorem for the Hammerstein integral equation
Mieczysław Cichoń ; Ireneusz Kubiaczyk
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 16 (1996), p. 171-177 / Harvested from The Polish Digital Mathematics Library

In this paper we prove an existence theorem for the Hammerstein integral equation x(t)=p(t)+λIK(t,s)f(s,x(s))ds, where the integral is taken in the sense of Pettis. In this theorem continuity assumptions for f are replaced by weak sequential continuity and the compactness condition is expressed in terms of the measures of weak noncompactness. Our equation is considered in general Banach spaces.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:275952
@article{bwmeta1.element.bwnjournal-article-div16i2n6bwm,
     author = {Mieczys\l aw Cicho\'n and Ireneusz Kubiaczyk},
     title = {Existence theorem for the Hammerstein integral equation},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {16},
     year = {1996},
     pages = {171-177},
     zbl = {0911.45009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div16i2n6bwm}
}
Mieczysław Cichoń; Ireneusz Kubiaczyk. Existence theorem for the Hammerstein integral equation. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 16 (1996) pp. 171-177. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div16i2n6bwm/

[000] [1] J. Appell, Implicit functions, nonlinear integral equations, and the measure of noncompactness of the superposition operator, J. Math. Anal. Appl. 83 (1981), 251-263. | Zbl 0495.45007

[001] [2] J. Appell, Misure di non compattezza in spazi ideali, Rend. Sc. Instituto Lombardo A 119 (1985), 175-186.

[002] [3] O. Arino, S. Gautier and J. P. Penot, A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcialaj Ekvac. 27 (1984), 273-279. | Zbl 0599.34008

[003] [4] J.M. Ball, Weak continuity properties of mappings and semi-groups Proc. Royal Soc. Edinbourgh Sect. A 72 (1979), 275-280.

[004] [5] M. Cichoń, On bounded weak solutions of a nonlinear differential equation in Banach spaces, Functiones et Approximatio 21 (1992), 27-35. | Zbl 0777.34041

[005] [6] M. Cichoń, Weak solutions of differential equations in Banach spaces, Discuss. Math. Diff. Incl. 15 (1995), 5-14.

[006] [7] J. Diestel and J.J. Uhl Jr., Vector Measures, Math. Surveys, Amer. Math. Soc., Providence, Rhode Island (15) (1977).

[007] [8] I. Kubiaczyk, On a fixed point for weakly sequentially continuous mappings, Discuss. Math. - Diff. Incl. 15 (1995), 15-20. | Zbl 0832.47046

[008] [9] A.R. Mitchell and Ch. Smith, An existence theorem for weak solutions of differential equations in Banach spaces, in: 'Nonlinear Equations in Abstract Spaces', ed. V. Lakshmikantham, Academic Press (1978), 387-404.

[009] [10] H. Mönch, Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces, Nonlin. Anal. Th. Meth. Appl. 4 (1980), 985-999. | Zbl 0462.34041

[010] [11] D. O'Regan, Integral equations in reflexive Banach spaces and the weak topologies, Proc. AMS 124 (1996), 607-614. | Zbl 0844.45009

[011] [12] S. Szufla, On the application of measure of noncompactness to existence theorems, Rend Sem. Mat. Univ. Padova, 75 (1986), 1-14. | Zbl 0589.45007

[012] [13] S. Szufla, On the Hammerstein integral equation with weakly singular kernel, Funkcialaj Ekvac. 34 (1991), 279-285. | Zbl 0753.45011

[013] [14] M. Talagrand, Pettis integral and measure theory, Memoires Amer. Math. Soc., Amer. Math. Soc., Providence, Rhode Island 51 (307) (1984).