Relaxation theorem for set-valued functions with decomposable values
Andrzej Kisielewicz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 16 (1996), p. 91-97 / Harvested from The Polish Digital Mathematics Library

Let (T,F,μ) be a separable probability measure space with a nonatomic measure μ. A subset K ⊂ L(T,Rⁿ) is said to be decomposable if for every A ∈ F and f ∈ K, g ∈ K one has fχA+gχTK. Using the property of decomposability as a substitute for convexity a relaxation theorem for fixed point sets of set-valued function is given.

Publié le : 1996-01-01
EUDML-ID : urn:eudml:doc:275996
@article{bwmeta1.element.bwnjournal-article-div16i1n5bwm,
     author = {Andrzej Kisielewicz},
     title = {Relaxation theorem for set-valued functions with decomposable values},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {16},
     year = {1996},
     pages = {91-97},
     zbl = {0867.54025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div16i1n5bwm}
}
Andrzej Kisielewicz. Relaxation theorem for set-valued functions with decomposable values. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 16 (1996) pp. 91-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div16i1n5bwm/

[000] [1] N. Dunford, J.T. Schwartz, Linear Operators I, Int. Publ. INC., New York 1967.

[001] [2] F. Hiai and H. Umegaki, Integrals, conditional expections and martingals of multifunctions, J. Multivariate Anal., 7 (1977), 149-182. | Zbl 0368.60006

[002] [3] A. Kisielewicz, Selection theorem for set-valued function with decomposable values, Comm. Math., 34 (1994), 123-135. | Zbl 0824.54013