Asymptotic estimates of solutions and their derivatives for n-th order nonhomogeneous ODEs with constant coefficients are obtained, provided the associated characteristic polynomial is (asymptotically) stable. Assuming, additionally, the stability of the so called "shifted polynomials" (see below) to the characteristic one, the estimates can be still improved.
@article{bwmeta1.element.bwnjournal-article-div16i1n4bwm, author = {Jan Andres and Tom\'a Tursk\'y}, title = {Asymptotic estimates of solutions and their derivatives for n-th order nonhomogeneous ordinary differential equations with constant coefficients}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {16}, year = {1996}, pages = {75-89}, zbl = {0879.34011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div16i1n4bwm} }
Jan Andres; Tomá Turský. Asymptotic estimates of solutions and their derivatives for n-th order nonhomogeneous ordinary differential equations with constant coefficients. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 16 (1996) pp. 75-89. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div16i1n4bwm/
[000] [1] J. Andres, Langrange stability of higher-order analogy of damped pendulum equations, Acta UPO 106, Phys. 31 (1992), 154-159.
[001] [2] J. Andres, On the problem of Hurwitz for shifted polynomials, Acta UPO 106, Phys. 31 (1992), 160-164 (Czech).
[002] [3] J. Andres and V. Vlek, Asymptotic behaviour of solutions to the n-th order nonlinear differential equation under forcing, Rend. Ist. Mat. Univ. Trieste 21 (1) (1989), 128-143. | Zbl 0753.34020
[003] [4] E.A. Barbashin and V.A. Tabueva, Dynamical Systems with Cylindrical Phase Space, Nauka, Moscow 1969 (Russian). | Zbl 0142.36702
[004] [5] B.F. Bylov, R.E. Vinograd, D.M. Grobman and V. V. Nemytskii, Theory of Liapunov Exponents, Nauka, Moscow 1966 (Russian).
[005] [6] L. Cesari, Asymptotic Behavior and Stability Problems in Ordinary Differential Equations, Springer, Berlin 1959. | Zbl 0082.07602
[006] [7] W.A. Coppel, Stability and Asymptotic Behavior of Differential Equations, D. C. Heath, Boston 1965.
[007] [8] E. Esclangon, Sur les intégrales bornées d'une équation différentielle linéaire, C. R. Ac. de Sc., Paris 160 (1915), 775-778. | Zbl 45.0475.02
[008] [9] J.O.C. Ezeilo, A boundedness theorem for a certain n-th order differential equation, Ann. Mat. Pura Appl. 4 (88) (1971), 135-142. | Zbl 0223.34027
[009] [10] A.F. Filippov, Differential Equations with Discontinuous Right-Hand Side, Nauka, Moscow 1985 (Russian). | Zbl 0571.34001
[010] [11] J. Kaucký, Elementary Methods for Solutions of Ordinary Differential Equations, SAV, Praha 1953 (Czech).
[011] [12] W. Kaplan, Ordinary Differential Equations, Addison-Wesley, Reading, Mass., 1940.
[012] [13] M.A. Krasnosel'skii, V. Sh. Burd and Yu. S. Kolesov, Nonlinear Almost Periodic Oscillations, Nauka, Moscow 1970 (Russian).
[013] [14] B.M. Levitan, Almost-Periodic Functions, GITTL, Moscow 1953 (Russian).
[014] [15] R. Reissig, Ein Beschränkheitsatz für gewisse Differentialgleichungen beliebiger Ordnung, Monatsb. Deutsch. Akad. Wiss. Berlin 6 (1964), 407-413. | Zbl 0121.31501
[015] [16] K. Rychlík, Introduction to the Analytical Theory of Polynomials with the Real Coefficients, SAV, Praha 1957 (Czech).
[016] [17] G. Sansone, Equazioni differenziali nel campo reale II, N. Zanichelli, Bologna 1949.
[017] [18] S. Sdziwy, Asymptotic properties of solutions of nonlinear differential equations of higher order, Zeszyty Nauk. Univ. Jagiel. 131 (1966), 69-80.
[018] [19] P.N.V. Tu, Dynamical Systems (An Introduction with Applications in Economics and Biology), Springer, Berlin 1992. | Zbl 0771.34004
[019] [20] J. Voráek, Note on paper [1] of S. Sdziwy, Acta UPO 33 (1971), 157-161.