In this paper we study Cauchy problems for retarded evolution inclusions, where the Fréchet subdifferential of a function F:Ω→R∪{+∞} (Ω is an open subset of a real separable Hilbert space) having a φ-monotone subdifferential of oder two is present. First we establish the existence of extremal trajectories and we show that the set of these trajectories is dense in the solution set of the original convex problem for the norm topology of the Banach space C([-r, T₀], Ω) ("strong relaxation theorem"). Then we prove that this density result allows one to establish a nonlinear "bang-bang principle" for a class of control systems with dealy on a nonconvex constraint. We want to observe that the results here extend those of [11] and [13].
@article{bwmeta1.element.bwnjournal-article-div16i1n3bwm, author = {Tiziana Cardinali and Simona Pieri}, title = {Existence and density results for retarded subdifferential evolution inclusions}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {16}, year = {1996}, pages = {53-74}, zbl = {0867.34053}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div16i1n3bwm} }
Tiziana Cardinali; Simona Pieri. Existence and density results for retarded subdifferential evolution inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 16 (1996) pp. 53-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div16i1n3bwm/
[000] [1] V. B, Nonlinear Semigroups and Differential Equations in Banach Spaces, Noordhoff International Publishing, Leyden, The Netherlands 1976.
[001] [2] M. B, Points extremaux multi-applications et fonctionelles integrales, These du 3éme cycle, Université de Grenoble, France.
[002] [3] H. B, Analisi funzionale, Teoria e applicazioni, Liguori 1986.
[003] [4] T. C, G. C, F. P, M. T, On a class of evolution equations without convexity, to appear.
[004] [5] G. C, M. T, Multivalued perturbations for a class of nonlinear evolution equations, Ann. di Mat. Pura Appl., 160 (1991), 147-162. | Zbl 0752.34013
[005] [6] M. D, A. M, M. T, Evolution equations with lack of convexity, J. Nonlinear Anal. Theory Meth. Appl., 9 (1985), 1401-1443. | Zbl 0545.46029
[006] [7] J. D, J. Uhl, Vector Measures, Mat. Surveys 15, A.M.S., Providence, R.I. 1977.
[007] [8] A. F, Continuos selections for a class of non-convex multivalued maps, Studia Math. 76 (1983), 163-174. | Zbl 0534.28003
[008] [9] J. G, Convex Analysis with Application in Differentiation of Convex Functions, Pitman, Boston 1982. | Zbl 0486.46001
[009] [10] C.J. H, Measurable relations, Fund. Math., LXXXVII (1975) 53-72.
[010] [11] N.S. P, F. P, On retarded evolution inclusion of the subdifferetial type, to appear.
[011] [12] N.S. P, On the solution set of nonconvex subdifferential evolution inclusions, to appear. | Zbl 0868.34010
[012] [13] F. P, Properties of the solution set of evolution inclusions, to appear.
[013] [14] J. S, C. W, Convexity and Optimization in Finite Dimension I, Springer-Verlag Berlin, Heidelberg, New York 1970.
[014] [15] A.A. T, Extremal selections of multivalued mappings and the 'bang - bang' principle for evolution inclusions, Soviet. Math. Dokl 317 (1991), 481-485. | Zbl 0784.54024
[015] [16] M. T, Quasi-autonomous parabolic evolution equations associated with a class of nonlinear operators, Ricerche di Matematica 38 (1989), 63-92. | Zbl 0736.47026
[016] [17] D.H. W, Survey of measurable selection theorems, SIAM J. Control Optim., 15 (1977), 859-903. | Zbl 0407.28006