The probabilistic approach to the Dirichlet boundary value problem for certain Schrödinger equations with magnetic vector potentials is examined
@article{bwmeta1.element.bwnjournal-article-div15i2n7bwm, author = {Wies\l aw Cupa\l a}, title = {The Dirichlet boundary value problem for certain Schr\"odinger equations with magnetic vector potentials}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {15}, year = {1995}, pages = {201-211}, zbl = {0847.35035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div15i2n7bwm} }
Wiesław Cupała. The Dirichlet boundary value problem for certain Schrödinger equations with magnetic vector potentials. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995) pp. 201-211. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div15i2n7bwm/
[000] [1] K.L. Chung, Lectures from Markov Process to Brownian Motion, Springer-Verlag 1982. | Zbl 0503.60073
[001] [2] K.L. Chung and K.M. Rao, Feynman-Kac functional and the Schrödinger equation, Seminar in Stochastic Process 1 (1981), 1-29. | Zbl 0492.60073
[002] [3] K.L. Chung and R.J. Williams, Introduction to Stochastic Integration, Birkhäuser, 1983.
[003] [4] L. Hörmander, The analysis of Linear Partial Differential Operators, 3 (1985) Springer-Verlag. | Zbl 0601.35001
[004] [5] S. Kakutani, Two-dimensional Brownian motion and harmonic functions, Proc. Imp. Acad. Tokyo 22 (1944), 706-714. | Zbl 0063.03107