A generalization of the theorem of Bajmóczy and Bárány which in turn is a common generalization of Borsuk's and Radon's theorem is presented. A related conjecture is formulated.
@article{bwmeta1.element.bwnjournal-article-div15i2n5bwm, author = {Adam Idzik}, title = {Borsuk-Ulam type theorems}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {15}, year = {1995}, pages = {187-190}, zbl = {0848.47035}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div15i2n5bwm} }
Adam Idzik. Borsuk-Ulam type theorems. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995) pp. 187-190. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div15i2n5bwm/
[000] [1] N. Alon, Some recent combinatorial applications of Borsuk-type theorems, In: Algebraic, Extremal and Metric Combinatorics (eds. M.M. Deza, P. Frankl, D.G. Rosenberg), Cambridge Univertsity Press, Cambridge (1988), 1-12.
[001] [2] N. Alon, Splitting necklaces, Advances in Math. 63 (1987), 247-253.
[002] [3] E.G. Bajmóczy and I. Bárány, On a common generalization of Borsuk's and Radon's theorem, Acta Math. Hung. (1979), 347-350. | Zbl 0446.52010
[003] [4] I. Bárány, S.B. Shlosman and A. Szücs, On a topological generalization of a theorem of Tverberg, J. London Math. Soc. 33 (2) (1981), 158-164. | Zbl 0453.55003
[004] [5] J. Dugundji and A. Granas, Fixed Point Theory, PWN - Polish Scientific Publishers, Warsaw 1982.
[005] [6] L. Górniewicz, Homological methods in fixed point theory of multi-valued maps, Dissertationes Math. 129 (1976), 1-71.
[006] [7] K. Gba and L. Górniewicz, On the Bourgin-Yang theorem for multi-valued maps I, Bull. Polish Acad. Sci. Math. 34 (1986), 315-322. | Zbl 0613.55001
[007] [8] K.S. Sarkaria, A generalized van Kampen-Flores theorem, Proc. Amer. Math. Soc. 111 (1991), 559-565. | Zbl 0722.57007
[008] [9] R.S. Simon, S. Spież and H. Toruńczyk, The existence of equilibria in certain games, separation for families of convex functions and a theorem of Borsuk-Ulam type, Mimeo. Inst. Math. Polish Acad. Sci. Warsaw 1994. | Zbl 0843.90143
[009] [10] H. Steinlein, Borsuk's antipodal theorem and its generalizations and applications: A survey, In: Méthodes Topologiques en Analyse Non Linéaire, Coll. Sém. de Math. Sup., (ed. A. Granas), Univ. de Montréal Press, Montréal 95 (1985), 166-235. | Zbl 0573.55003
[010] [11] H. Tverberg, A generalization of Radon's theorem, J. London Math. Soc. 41 (1966), 123-128. | Zbl 0131.20002