Viability theorems for stochastic inclusions
Michał Kisielewicz
Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995), p. 61-42 / Harvested from The Polish Digital Mathematics Library

Sufficient conditions for the existence of solutions to stochastic inclusions xt-xsstFτ(xτ)dτ+stGτ(xτ)dwτ+stIRHτ,z(xτ)ν̃(dτ,dz) beloning to a given set K of n-dimensional cádlág processes are given.

Publié le : 1995-01-01
EUDML-ID : urn:eudml:doc:275850
@article{bwmeta1.element.bwnjournal-article-div15i1n6bwm,
     author = {Micha\l\ Kisielewicz},
     title = {Viability theorems for stochastic inclusions},
     journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization},
     volume = {15},
     year = {1995},
     pages = {61-42},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div15i1n6bwm}
}
Michał Kisielewicz. Viability theorems for stochastic inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995) pp. 61-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div15i1n6bwm/

[000] [1] J. P. Aubin, and A. Cellina, Differential Inclusions, Springer-Verlag 1984. | Zbl 0538.34007

[001] [2] J. P. Aubin and H. Frankowska, Set-Valued Analysis, Birkhäser 1990.

[002] [3] F. Hiai, and H. Umegaki, Integrals, conditional expections and martingals of multifunctions, J. Multivariate Anal. 7 (1977), 149-182. | Zbl 0368.60006

[003] [4] M. Kisielewicz, Set-valued stochastic integrals and stochastic inclusions, Journal of Stochastic Analysis and Applications (submitted to print).

[004] [5] M. Kisielewicz, Properties of solution set of stochastic inclusions, Journal of Appl. Math. and Stochastic Analysis 6 (3) (1993), 217-236. | Zbl 0796.93106

[005] [6] M. Kisielewicz, Differential Inclusions and Optimal Control, Kluwer Acad. Publ. and Polish Sci. Publ. Warszawa - Dordrecht - Boston - London (1991). | Zbl 0731.49001

[006] [7] N. S. Papageorgiou, Decomposable sets in the Lebesgue-Bochner spaces, Comm. Math. Univ. Sancti Pauli 37 (1) (1988), 49-62. | Zbl 0679.46032

[007] [8] Ph. Protter, Stochastic Integration and Differential Equations, Springer-Verlag (1990), Berlin - Heildelberg - New York.