In this paper we consider evolution inclusions of subdifferential type. First, we prove a convergence result and a continuous dependence proposition for abstract Cauchy problem of the form u' ∈ -∂⁻f(u) + G(u), u(0) = x₀, where ∂⁻f is the Fréchet subdifferential of a function f defined on an open subset Ω of a real separable Hilbert space H, taking its values in IR ∪ {+∞}, and G is a multifunction from C([0,T],Ω) into the nonempty subsets of L²([0,T],H). We obtain analogous results for the multivalued perturbed problem x' ∈ -∂⁻f(x) + G(t,x), x(0) = x₀, where G:[0,T]×Ω → N(H) is a suitable multifunction.
@article{bwmeta1.element.bwnjournal-article-div15i1n5bwm, author = {Tiziana Cardinali and Francesca Papalini}, title = {Convergence results for nonlinear evolution inclusions}, journal = {Discussiones Mathematicae, Differential Inclusions, Control and Optimization}, volume = {15}, year = {1995}, pages = {43-60}, zbl = {0828.34011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-div15i1n5bwm} }
Tiziana Cardinali; Francesca Papalini. Convergence results for nonlinear evolution inclusions. Discussiones Mathematicae, Differential Inclusions, Control and Optimization, Tome 15 (1995) pp. 43-60. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-div15i1n5bwm/
[000] [1] J. P. Aubin, A. Cellina, Differential Inclusions, Springer-Verlag, Berlin 1984. | Zbl 0538.34007
[001] [2] H. Brezis, Analyse fonctionelle, théorie et applications, Masson, Paris 1983.
[002] [3] T. Cardinali, F. Papalini, Existence theorems for nonlinear evolution inclusions, to apper. | Zbl 0934.34054
[003] [4] G. Colombo, M. Tosques, Multivalued perturbations for a class of nonlinear evolution equations, Ann. di Mat. Pura Appl. 160 (1991), pp 147-162. | Zbl 0752.34013
[004] [5] J. Hale, Ordinary differential equations, Wiley-Interscience, New York 1969. | Zbl 0186.40901
[005] [6] M. Tosques, Quasi-autonomous parabolic evolution equations associated with a class of nonlinear operators, Ricerche di Matematica 38 (1989), pp. 63-92. | Zbl 0736.47026