Tame triangular matrix algebras
Leszczyński, Zbigniew ; Skowroński, Andrzej
Colloquium Mathematicae, Tome 84/85 (2000), p. 259-303 / Harvested from The Polish Digital Mathematics Library

We describe all finite-dimensional algebras A over an algebraically closed field for which the algebra T2(A) of 2×2 upper triangular matrices over A is of tame representation type. Moreover, the algebras A for which T2(A) is of polynomial growth (respectively, domestic, of finite representation type) are also characterized.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210855
@article{bwmeta1.element.bwnjournal-article-cmv86i2p259bwm,
     author = {Zbigniew Leszczy\'nski and Andrzej Skowro\'nski},
     title = {Tame triangular matrix algebras},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {259-303},
     zbl = {0978.16014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p259bwm}
}
Leszczyński, Zbigniew; Skowroński, Andrzej. Tame triangular matrix algebras. Colloquium Mathematicae, Tome 84/85 (2000) pp. 259-303. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p259bwm/

[000] [1] I. Assem and A. Skowroński, On some classes of simply connected algebras, Proc. London Math. Soc. 56 1988 417-450 | Zbl 0617.16018

[001] [2] M. Auslander, M. I. Platzeck and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math. Soc. 250 1979 1-46

[002] [3] M. Auslander and I. Reiten, On the representation type of triangular matrix rings, J. London Math. Soc. 12 1976 371-382

[003] [4] M. Auslander, I. Reiten and S. O. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1985.

[004] [5] R. Bautista, P. Gabriel, A. V. Roiter and L. Salmerón, Representation-finite algebras and multiplicative bases, Invent. Math. 81 1985 217-285 | Zbl 0575.16012

[005] [6] K. Bongartz, Algebras and quadratic forms, J. London Math. Soc. 28 1983 461-469 | Zbl 0532.16020

[006] [7] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 1984 117-136 | Zbl 0537.16024

[007] [8] K. Bongartz, A criterion for finite representation type, Math. Ann. 269 1984 1-12

[008] [9] K. Bongartz and P. Gabriel, Covering spaces in representation theory, Invent. Math. 69 1981 331-378 | Zbl 0482.16026

[009] [10] S. Brenner, Large indecomposable modules over a ring of 2×2 triangular matrices, Bull. London Math. Soc. 3 1971 333-336 | Zbl 0223.16012

[010] [11] S. Brenner, On two questions of M. Auslander, ibid. 4 1972 301-302 | Zbl 0261.16015

[011] [12] O. Bretscher and P. Gabriel, The standard form of a representation-finite algebra, Bull. Soc. Math. France 111 1983 21-40 | Zbl 0527.16021

[012] [13] W. W. Crawley-Boevey, On tame algebras and bocses, Proc. London Math. Soc. 56 1988 451-483 | Zbl 0661.16026

[013] [14] W. W. Crawley-Boevey, Tame algebras and generic modules, ibid. 63 1991 241-265 | Zbl 0741.16005

[014] [15] P. Dowbor and A. Skowroński, On Galois coverings of tame algebras, Arch. Math. (Basel) 44 1985 522-529 | Zbl 0576.16029

[015] [16] P. Dowbor and A. Skowroński, On the representation type of locally bounded categories, Tsukuba J. Math. 10 1986 63-77 | Zbl 0604.16024

[016] [17] P. Dowbor and A. Skowroński, Galois coverings of representation-infinite algebras, Comment. Math. Helv. 62 1987 311-337 | Zbl 0628.16019

[017] [18] P. Dräxler and A. Skowroński, Biextensions by indecomposable modules of derived regular length 2, Compositio Math. 117 1999 205-221 | Zbl 0959.16010

[018] [19] Yu. A. Drozd, Tame and wild matrix problems, in: Representation Theory II, Lecture Notes in Math. 832, Springer, 1980, 242-258

[019] [20] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 1-71

[020] [21] P. Gabriel, The universal cover of a representation-finite algebra, in: Representations of Algebras, Lecture Notes in Math. 903, Springer, 1981, 68-105

[021] [22] D. Happel and D. Vossieck, Minimal algebras of finite representation type with preprojective component, Manuscripta Math. 42 1983 221-243 | Zbl 0516.16023

[022] [23] M. Hishino and I. Miyachi, Tame triangular matrix algebras over self-injective algebras, Tsukuba J. Math. 11 1987 383-391

[023] [24] K. Igusa, M. I. Platzeck, G. Todorov and D. Zacharia, Auslander algebras of finite representation type, Comm. Algebra 15 1987 377-424 | Zbl 0609.16014

[024] [25] O. Kerner, Tilting wild algebras, J. London Math. Soc. 39 1989 29-47 | Zbl 0675.16013

[025] [26] O. Kerner and A. Skowroński, On module categories with nilpotent infinite radical, Compositio Math. 77 1991 313-333 | Zbl 0717.16012

[026] [27] M. Lersch, Minimal wilde Algebren, Diplomarbeit, Düsseldorf, 1987.

[027] [28] Z. Leszczyński, l-hereditary triangular matrix algebras of tame representation type, Arch. Math. (Basel) 54 1990 25-31

[028] [29] Z. Leszczyński, On the representation type of triangular matrix algebras over special algebras, Fund. Math. 137 1991 65-80 | Zbl 0727.16011

[029] [30] Z. Leszczyński, On the representation type of tensor product algebras, ibid. 144 1994 143-161 | Zbl 0817.16008

[030] [31] Z. Leszczyński and D. Simson, On the triangular matrix rings of finite type, J. London Math. Soc. 20 1979 386-402 | Zbl 0434.16022

[031] [32] Z. Leszczyński and A. Skowroński, Auslander algebras of tame representation type, in: Representation Theory of Algebras, CMS Conf. Proc. 18, Amer. Math. Soc., 1986, 475-486 | Zbl 0861.16010

[032] [33] N. Marmaridis, On the representation type of certain triangular matrix rings, Comm. Algebra 11 1983 1945-1964

[033] [34] R. Nörenberg and A. Skowroński, Tame minimal non-polynomial growth simply connected algebras, Colloq. Math. 73 1997 301-330 | Zbl 0889.16005

[034] [35] J. A. de la Peña, Algebras with hypercritical Tits form, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 353-369

[035] [36] J. A. de la Peña, On the dimension of the module-varieties of tame and wild algebras, Comm. Algebra 19 1991 1795-1807 | Zbl 0818.16013

[036] [37] C. M. Ringel, Tame algebras, in: Representation Theory I, Lecture Notes in Math. 831, Springer, 1980, 137-287

[037] [38] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[038] [39] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon and Breach, 1992. | Zbl 0818.16009

[039] [40] A. Skowroński, Tame triangular matrix algebras over Nakayama algebras, J. London Math. Soc. 34 1986 245-264 | Zbl 0606.16021

[040] [41] A. Skowroński, On tame triangular matrix algebras, Bull. Polish Acad. Sci. Math. 34 1986 517-523 | Zbl 0612.16016

[041] [42] A. Skowroński, Group algebras of polynomial growth, Manuscripta Math. 59 1987 499-516 | Zbl 0627.16007

[042] [43] A. Skowroński, Algebras of polynomial growth, in: Topics in Algebra, Banach Center Publ. 26, Part 1, PWN, Warszawa, 1990, 535-468

[043] [44] A. Skowroński, Simply connected algebras and Hochschild cohomologies, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 431-447 | Zbl 0806.16012

[044] [45] A. Skowroński, Module categories over tame algebras, in: Representation Theory and Related Topics, CMS Conf. Proc. 19, Amer. Math. Soc., 1996, 281-313 | Zbl 0856.16010

[045] [46] A. Skowroński, Simply connected algebras of polynomial growth, Compositio Math. 109 1997 99-133 | Zbl 0889.16004

[046] [47] A. Skowroński, Tame algebras with strongly simply connected Galois coverings, Colloq. Math. 72 1997 335-351 | Zbl 0876.16007

[047] [48] L. Unger, The concealed algebras of the minimal wild hereditary algebras, Bayreuth. Math. Schr. 31 1990 145-154 | Zbl 0739.16012

[048] [49] J. Wittmann, Verkleidete zahne und minimal Algebren, Diplomarbeit, Bayreuth, 1990.