Representation theory of two-dimensionalbrauer graph rings
Rump, Wolfgang
Colloquium Mathematicae, Tome 84/85 (2000), p. 239-251 / Harvested from The Polish Digital Mathematics Library

We consider a class of two-dimensional non-commutative Cohen-Macaulay rings to which a Brauer graph, that is, a finite graph endowed with a cyclic ordering of edges at any vertex, can be associated in a natural way. Some orders Λ over a two-dimensional regular local ring are of this type. They arise, e.g., as certain blocks of Hecke algebras over the completion of [q,q-1] at (p,q-1) for some rational prime p. For such orders Λ, a class of indecomposable maximal Cohen-Macaulay modules (see introduction) has been determined by K. W. Roggenkamp. We prove that this list of indecomposables of Λ is complete.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210853
@article{bwmeta1.element.bwnjournal-article-cmv86i2p239bwm,
     author = {Wolfgang Rump},
     title = {Representation theory of two-dimensionalbrauer graph rings},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {239-251},
     zbl = {0990.16013},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p239bwm}
}
Rump, Wolfgang. Representation theory of two-dimensionalbrauer graph rings. Colloquium Mathematicae, Tome 84/85 (2000) pp. 239-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p239bwm/

[000] [1] M. Auslander, Isolated singularities and existence of almost split sequences, in: Representation Theory II, Groups and Orders, Lecture Notes in Math. 1178, Springer, 1986, 194-242.

[001] [2] M. Auslander, Functors and morphisms determined by objects, in: Proc. Conf. Representation Theory (Philadelphia, 1976), Dekker, 1978, 1-244.

[002] [3] M. Auslander and I. Reiten, Almost Split Sequences for Cohen-Macaulay Modules, Math. Ann. 277 (1987), 345-349. | Zbl 0611.13009

[003] [4] M. Auslander, I. Reiten and S. Smalο, Representation Theory of Artin Algebras, Cambridge Stud. Adv. Math. 36, Cambridge Univ. Press, 1995.

[004] [5] C. W. Curtis and I. Reiner, Methods of Representation Theory, I, II, Wiley,1987.

[005] [6] P. Gabriel, Auslander-Reiten sequences and representation-finite algebras, in: Lecture Notes in Math. 831, Springer, 1980, 1-71.

[006] [7] J. A. Green, Walking around the Brauer tree, J. Austral. Math. Soc. 17 (1974), 197-213. | Zbl 0299.20006

[007] [8] D. Kazhdan and G. Lusztig, Representations of Coxeter groups and Hecke algebras, Invent. Math. 53 (1979), 165-184. | Zbl 0499.20035

[008] [9] G. Lusztig, On quantum groups, J. Algebra 131 (1990), 466-475. | Zbl 0698.16007

[009] [10] J. C. McConnell, Localization in enveloping rings, J. London Math. Soc. 43 (1968), 421-428. | Zbl 0162.05203

[010] [11] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, Wiley, 1987.

[011] [12] I. Reiner, Maximal Orders, London, 1975.

[012] [13] I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 408 (1989). | Zbl 0677.16002

[013] [14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[014] [15] K. W. Roggenkamp, Indecomposable Representations of Orders, in: Topics in Algebra, Part I: Rings and Representations of Algebras, Banach Center Publ. 26, PWN, Warszawa, 1990, 449-491.

[015] [16] K. W. Roggenkamp, Cohen-Macaulay modules over two-dimensional graph orders, Colloq. Math. 82 (2000), 25-48. | Zbl 0945.16013

[016] [17] K. W. Roggenkamp, Blocks with cyclic defect of Hecke orders of Coxeter groups, preprint. | Zbl 0960.16015

[017] [18] K. W. Roggenkamp and W. Rump, Orders in non-semisimple algebras, Comm. Algebra 27 (1999), 5267-5301. | Zbl 0939.16009

[018] [19] W. Rump, Green walks in a hypergraph, Colloq. Math. 78 (1998), 133-147. | Zbl 0938.16008

[019] [20] W. Rump, Non-commutative Cohen-Macaulay rings, manuscript, Stuttgart, 1999.

[020] [21] W. Rump, Non-commutative regular rings, manuscript, Stuttgart, 1999.

[021] [22] W. Rump, *-modules, tilting, and almost abelian categories, Comm. Algebra, to appear.

[022] [23] J.-P. Serre, Algèbre Locale Multiplicités, Lecture Notes in Math. 11, Berlin 1975. | Zbl 0091.03701

[023] [24] D. Simson, Linear Representations of Partially Ordered Sets and Vector Space Categories, Algebra Logic Appl. 4, Gordon & Breach, New York, 1992. | Zbl 0818.16009

[024] [25] Y. Yoshino, Cohen-Macaulay Modules over Cohen-Macaulay Rings, London Math. Soc. Lecture Note Ser. 146, Cambridge Univ. Press, 1990. | Zbl 0745.13003