We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.
@article{bwmeta1.element.bwnjournal-article-cmv86i2p209bwm, author = {Helmut Lenzing and Andrzej Skowro\'nski}, title = {Roots of Nakayama and Auslander-Reiten translations}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {209-230}, zbl = {0982.16012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p209bwm} }
Lenzing, Helmut; Skowroński, Andrzej. Roots of Nakayama and Auslander-Reiten translations. Colloquium Mathematicae, Tome 84/85 (2000) pp. 209-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p209bwm/
[000] [1] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. | Zbl 0686.16011
[001] [2] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136. | Zbl 0537.16024
[002] [3] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Springer, 1972. | Zbl 0239.20040
[003] [4] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.
[004] [5] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. | Zbl 0635.16017
[005] [6] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. | Zbl 0516.16023
[006] [7] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. | Zbl 0488.16021
[007] [8] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one and representations of tubular algebras, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. | Zbl 0809.16012
[008] [9] H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700. | Zbl 0965.16008
[009] [10] H. Lenzing and A. Skowroński, On selfinjective algebras of Euclidean type, Colloq. Math. 79 (1999), 71-76. | Zbl 0947.16005
[010] [11] H. Lenzing and A. Skowroński, Selfinjective algebras of wild canonical type, preprint, 1999.
[011] [12] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. | Zbl 0677.16008
[012] [13] Y. Ohnuki, K. Takeda and K. Yamagata, Automorphisms of repetitive algebras, J. Algebra, to appear. | Zbl 1035.16010
[013] [14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.
[014] [15] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199. | Zbl 0653.16021
[015] [16] A. Skowroński and K. Yamagata, Socle deformations of selfinjective algebras, Proc. London Math. Soc. 72 (1996), 545-566. | Zbl 0862.16001
[016] [17] A. Skowroński and K. Yamagata, Galois coverings of selfinjective algebras by repetitive algebras, Trans. Amer. Math. Soc. 351 (1999), 715-734. | Zbl 0915.16006