Roots of Nakayama and Auslander-Reiten translations
Lenzing, Helmut ; Skowroński, Andrzej
Colloquium Mathematicae, Tome 84/85 (2000), p. 209-230 / Harvested from The Polish Digital Mathematics Library

We discuss the roots of the Nakayama and Auslander-Reiten translations in the derived category of coherent sheaves over a weighted projective line. As an application we derive some new results on the structure of selfinjective algebras of canonical type.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210851
@article{bwmeta1.element.bwnjournal-article-cmv86i2p209bwm,
     author = {Helmut Lenzing and Andrzej Skowro\'nski},
     title = {Roots of Nakayama and Auslander-Reiten translations},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {209-230},
     zbl = {0982.16012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p209bwm}
}
Lenzing, Helmut; Skowroński, Andrzej. Roots of Nakayama and Auslander-Reiten translations. Colloquium Mathematicae, Tome 84/85 (2000) pp. 209-230. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p209bwm/

[000] [1] I. Assem, J. Nehring and A. Skowroński, Domestic trivial extensions of simply connected algebras, Tsukuba J. Math. 13 (1989), 31-72. | Zbl 0686.16011

[001] [2] K. Bongartz, Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136. | Zbl 0537.16024

[002] [3] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, 3rd ed., Springer, 1972. | Zbl 0239.20040

[003] [4] W. Geigle and H. Lenzing, A class of weighted projective curves arising in representation theory of finite dimensional algebras, in: Singularities, Representations of Algebras, and Vector Bundles, Lecture Notes in Math. 1273, Springer, 1987, 265-297.

[004] [5] D. Happel, Triangulated Categories in the Representation Theory of Finite Dimensional Algebras, London Math. Soc. Lecture Note Ser. 119, Cambridge Univ. Press, 1988. | Zbl 0635.16017

[005] [6] D. Happel and D. Vossieck, Minimal algebras of infinite representation type with preprojective component, Manuscripta Math. 42 (1983), 221-243. | Zbl 0516.16023

[006] [7] D. Hughes and J. Waschbüsch, Trivial extensions of tilted algebras, Proc. London Math. Soc. 46 (1983), 347-364. | Zbl 0488.16021

[007] [8] H. Lenzing and H. Meltzer, Sheaves on a weighted projective line of genus one and representations of tubular algebras, in: Representations of Algebras, CMS Conf. Proc. 14, Amer. Math. Soc., 1993, 313-337. | Zbl 0809.16012

[008] [9] H. Lenzing and H. Meltzer, The automorphism group of the derived category for a weighted projective line, Comm. Algebra 28 (2000), 1685-1700. | Zbl 0965.16008

[009] [10] H. Lenzing and A. Skowroński, On selfinjective algebras of Euclidean type, Colloq. Math. 79 (1999), 71-76. | Zbl 0947.16005

[010] [11] H. Lenzing and A. Skowroński, Selfinjective algebras of wild canonical type, preprint, 1999.

[011] [12] J. Nehring and A. Skowroński, Polynomial growth trivial extensions of simply connected algebras, Fund. Math. 132 (1989), 117-134. | Zbl 0677.16008

[012] [13] Y. Ohnuki, K. Takeda and K. Yamagata, Automorphisms of repetitive algebras, J. Algebra, to appear. | Zbl 1035.16010

[013] [14] C. M. Ringel, Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math. 1099, Springer, 1984.

[014] [15] A. Skowroński, Selfinjective algebras of polynomial growth, Math. Ann. 285 (1989), 177-199. | Zbl 0653.16021

[015] [16] A. Skowroński and K. Yamagata, Socle deformations of selfinjective algebras, Proc. London Math. Soc. 72 (1996), 545-566. | Zbl 0862.16001

[016] [17] A. Skowroński and K. Yamagata, Galois coverings of selfinjective algebras by repetitive algebras, Trans. Amer. Math. Soc. 351 (1999), 715-734. | Zbl 0915.16006