In analogy to the analyticity condition , t > 0, for a continuous time semigroup , a bounded operator T is called analytic if the discrete time semigroup satisfies , n ∈ ℕ. We generalize O. Nevanlinna’s characterization of powerbounded and analytic operators T to the following perturbation result: if S is a perturbation of T such that is small enough for some , then the type of the semigroup also controls the analyticity of S in the sense that , n ∈ ℕ. As an application we generalize and give a simple proof of a result by M. Christ on the temporal regularity of random walks T on graphs of polynomial volume growth. On arbitrary spaces Ω of at most exponential volume growth we obtain this regularity for any powerbounded and analytic operator T on with a heat kernel satisfying Gaussian upper bounds.
@article{bwmeta1.element.bwnjournal-article-cmv86i2p189bwm, author = {S\"onke Blunck}, title = {Perturbation of analytic operators and temporal regularity of discrete heat kernels}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {189-201}, zbl = {0961.47005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p189bwm} }
Blunck, Sönke. Perturbation of analytic operators and temporal regularity of discrete heat kernels. Colloquium Mathematicae, Tome 84/85 (2000) pp. 189-201. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p189bwm/
[000] [BB] M. T. Barlow and R. F. Bass, Random walks on graphical Sierpiński carpets, in preparation. | Zbl 0958.60045
[001] [C] M. Christ, Temporal regularity for random walk on discrete nilpotent groups, J. Fourier Anal. Appl., Kahane Special Issue (1995), 141-151. | Zbl 0889.60007
[002] [C-SC] T. Coulhon et L. Saloff-Coste, Puissances d'un opérateur régularisant, Ann. Inst. H. Poincaré Probab. Statist. 26 (1990), 419-436. | Zbl 0709.47042
[003] [H-SC] W. Hebisch and L. Saloff-Coste, Gaussian estimates for Markov chains and random walks on graphs, Ann. Probab. 21 (1993), 673-709. | Zbl 0776.60086
[004] [J] O. D. Jones, Transition probabilities for the simple random walk on the Sierpiński graph, Stochastic Process. Appl. 61 (1996), 45-69. | Zbl 0853.60058
[005] [N1] O. Nevanlinna, Convergence of Iterations for Linear Equations, Birkhäuser, Basel, 1993.
[006] [N2] O. Nevanlinna, On the growth of the resolvent operators for power bounded operators, in: Linear Operators, J. Janas, F. H. Szafraniec and J. Zemánek (eds.), Banach Center Publ. 38, Inst. Math., Polish Acad. Sci., 1997, 247-264. | Zbl 0913.47004
[007] [P] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci. 44, Springer, 1983. | Zbl 0516.47023