Let be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and . So has a natural structure of G-module. We obtain a decomposition of as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in where , and where denotes the standard basis of the Lie algebra of . Finally, we obtain a spectral characterization of the bounded operators on that commute with the action of G.
@article{bwmeta1.element.bwnjournal-article-cmv86i2p177bwm, author = {T. Godoy and L. Saal}, title = {Some spectral results on $L^{2}(H\_{n})$ related to the action of U(p,q)}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {177-187}, zbl = {0961.43008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p177bwm} }
Godoy, T.; Saal, L. Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q). Colloquium Mathematicae, Tome 84/85 (2000) pp. 177-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p177bwm/
[000] [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Stud. 94, Princeton Univ. Press, 1980. | Zbl 0443.22010
[001] [F-1] G. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989. | Zbl 0682.43001
[002] [F-2] G. Folland, Hermite distributions associated to the group O(p,q), Proc. Amer. Math. Soc. 126 (1998), 1751-1763. | Zbl 0964.33012
[003] [G-S] T. Godoy and L. Saal, spectral theory on the Heisenberg group associated to the action of U(p,q), Pacific J. Math. 193 (2000), 327-353. | Zbl 1009.43005
[004] [H-T] R. Howe and E. Tan, Non-Abelian Harmonic Analysis, Springer, 1992.
[005] [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | Zbl 0821.42001
[006] [St-1] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-149. | Zbl 0694.43008
[007] [St-2] R. Strichartz, harmonic analysis and Radon transforms on the Heisenberg group, ibid. 96 (1991), 350-406.
[008] [T] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, 1998. | Zbl 0892.43001