Some spectral results on L2(Hn) related to the action of U(p,q)
Godoy, T. ; Saal, L.
Colloquium Mathematicae, Tome 84/85 (2000), p. 177-187 / Harvested from The Polish Digital Mathematics Library

Let Hn be the (2n+1)-dimensional Heisenberg group, let p,q be two non-negative integers satisfying p+q=n and let G be the semidirect product of U(p,q) and Hn. So L2(Hn) has a natural structure of G-module. We obtain a decomposition of L2(Hn) as a direct integral of irreducible representations of G. On the other hand, we give an explicit description of the joint spectrum σ(L,iT) in L2(Hn) where L=j=1p(Xj2+Yj2)-j=p+1n(Xj2+Yj2), and where X1,Y1,...,Xn,Yn,T denotes the standard basis of the Lie algebra of Hn. Finally, we obtain a spectral characterization of the bounded operators on L2(Hn) that commute with the action of G.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210848
@article{bwmeta1.element.bwnjournal-article-cmv86i2p177bwm,
     author = {T. Godoy and L. Saal},
     title = {Some spectral results on $L^{2}(H\_{n})$ related to the action of U(p,q)},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {177-187},
     zbl = {0961.43008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p177bwm}
}
Godoy, T.; Saal, L. Some spectral results on $L^{2}(H_{n})$ related to the action of U(p,q). Colloquium Mathematicae, Tome 84/85 (2000) pp. 177-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p177bwm/

[000] [B-W] A. Borel and N. Wallach, Continuous Cohomology, Discrete Subgroups, and Representations of Reductive Groups, Ann. of Math. Stud. 94, Princeton Univ. Press, 1980. | Zbl 0443.22010

[001] [F-1] G. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989. | Zbl 0682.43001

[002] [F-2] G. Folland, Hermite distributions associated to the group O(p,q), Proc. Amer. Math. Soc. 126 (1998), 1751-1763. | Zbl 0964.33012

[003] [G-S] T. Godoy and L. Saal, L2 spectral theory on the Heisenberg group associated to the action of U(p,q), Pacific J. Math. 193 (2000), 327-353. | Zbl 1009.43005

[004] [H-T] R. Howe and E. Tan, Non-Abelian Harmonic Analysis, Springer, 1992.

[005] [S] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993. | Zbl 0821.42001

[006] [St-1] R. Strichartz, Harmonic analysis as spectral theory of Laplacians, J. Funct. Anal. 87 (1989), 51-149. | Zbl 0694.43008

[007] [St-2] R. Strichartz, Lp harmonic analysis and Radon transforms on the Heisenberg group, ibid. 96 (1991), 350-406.

[008] [T] S. Thangavelu, Harmonic Analysis on the Heisenberg Group, Progr. Math. 159, Birkhäuser, 1998. | Zbl 0892.43001