Given a family of (W) contractions on a reflexive Banach space X we discuss unrestricted sequences . We show that they converge weakly to a common fixed point, which depends only on x and not on the order of the operators if and only if the weak operator closed semigroups generated by are right amenable.
@article{bwmeta1.element.bwnjournal-article-cmv86i2p163bwm, author = {W. Bartoszek}, title = {On unrestricted products of (W) contractions}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {163-170}, zbl = {0971.47047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p163bwm} }
Bartoszek, W. On unrestricted products of (W) contractions. Colloquium Mathematicae, Tome 84/85 (2000) pp. 163-170. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i2p163bwm/
[000] [AA] I. Amemiya and T. Ando, Convergence of random products of contractions in Hilbert space, Acta Sci. Math. (Szeged) 26 (1965), 239-244. | Zbl 0143.16202
[001] [B] R. E. Bruck, Random products of contractions in metric and Banach spaces, J. Math. Anal. Appl. 88 (1982), 319-332. | Zbl 0512.47042
[002] [BA] H. H. Bauschke, A norm convergence result of random products of relaxed projections in Hilbert space, Trans. Amer. Math. Soc. 347 (1995), 1365-1373. | Zbl 0832.47055
[003] [DKLR] J. M. Dye, T. Kuczumow, P.-K. Lin and S. Reich, Convergence on unrestricted products of nonexpansive mappings in spaces with the Opial property, Nonlinear Anal. 26 (1996), 767-773. | Zbl 0866.47038
[004] [DLG] K. DeLeeuw and I. Glickberg, Applications of almost periodic compactifications, Acta Math. 105 (1961), 63-97.
[005] [D] J. Dye, A generalization of a theorem of Amemiya and Ando on the convergence of random products of contractions in Hilbert space, Integral Equations Oper. Theory 12 (1989), 155-162. | Zbl 0691.47012
[006] [DKR] J. Dye, M. A. Khamsi and S. Reich, Random products of contractions in Banach spaces, Trans. Amer. Math. Soc. 325 (1991), 87-99. | Zbl 0735.47001
[007] [DR] J. M. Dye and S. Reich, On the unrestricted iteration of projections in Hilbert space, J. Math. Anal. Appl. 156 (1991), 101-119. | Zbl 0731.65041
[008] [L] P.-K. Lin, Unrestricted products of contractions in Banach spaces, Nonlinear Anal. 24 (1995), 1103-1108. | Zbl 0870.47034
[009] [N] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 44 (1943), 401-485. | Zbl 0034.06102
[010] [R] S. Reich, The alternating algorithm of von Neumann in the Hilbert ball, Dynamic Systems Appl. 2 (1993), 21-26. | Zbl 0768.41032
[011] [RZ] S. Reich and A. J. Zaslavski, Convergence of generic infinite products of order-preserving mappings, Positivity 3 (1999), 1-21. | Zbl 0923.47032