Symmetric partitions and pairings
Oravecz, Ferenc
Colloquium Mathematicae, Tome 84/85 (2000), p. 93-101 / Harvested from The Polish Digital Mathematics Library

The lattice of partitions and the sublattice of non-crossing partitions of a finite set are important objects in combinatorics. In this paper another sublattice of the partitions is investigated, which is formed by the symmetric partitions. The measure whose nth moment is given by the number of non-crossing symmetric partitions of n elements is determined explicitly to be the "symmetric" analogue of the free Poisson law.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210843
@article{bwmeta1.element.bwnjournal-article-cmv86i1p93bwm,
     author = {Ferenc Oravecz},
     title = {Symmetric partitions and pairings},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {93-101},
     zbl = {0971.05009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p93bwm}
}
Oravecz, Ferenc. Symmetric partitions and pairings. Colloquium Mathematicae, Tome 84/85 (2000) pp. 93-101. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p93bwm/

[000] [1] N. I. Akhiezer, Classical Moment Problem, Gos. Izdat. Fiz.-Mat. Liter., Moscow, 1961 (in Russian). | Zbl 0124.06202

[001] [2] G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976. | Zbl 0371.10001

[002] [3] F. Hiai and D. Petz, The semi-circle law, free random variables and entropy, preprint. | Zbl 0955.46037

[003] [4] G. Kreweras, Sur les partitions non-croisées d'un cycle, Discrete Math. 1 (1972), 333-350. | Zbl 0231.05014

[004] [5] F. Oravecz and D. Petz, On the eigenvalue distribution of some symmetric random matrices, Acta Sci. Math. (Szeged) 63 (1997), 383-395. | Zbl 0889.15006

[005] [6] J. Touchard, Sur un problème de configurations et sur les fractions continues, Canad. J. Math. 4 (1952), 2-25. | Zbl 0047.01801

[006] [7] D. Voiculescu, K. Dykema and A. Nica, Free Random Variables, CRM Monogr. Ser. 1, Amer. Math. Soc., Providence, RI, 1992.