H1-BMO duality on graphs
Russ, Emmanuel
Colloquium Mathematicae, Tome 84/85 (2000), p. 67-91 / Harvested from The Polish Digital Mathematics Library

On graphs satisfying the doubling property and the Poincaré inequality, we prove that the space Hmax1 is equal to Hat1, and therefore that its dual is BMO. We also prove the atomic decomposition for Hmaxp for p ≤ 1 close enough to 1.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210842
@article{bwmeta1.element.bwnjournal-article-cmv86i1p67bwm,
     author = {Emmanuel Russ},
     title = {$H^1$-BMO duality on graphs},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {67-91},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p67bwm}
}
Russ, Emmanuel. $H^1$-BMO duality on graphs. Colloquium Mathematicae, Tome 84/85 (2000) pp. 67-91. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p67bwm/

[000] [AC] P. Auscher and T. Coulhon, Gaussian lower bounds for random walks from elliptic regularity, Ann. Inst. H. Poincaré Probab. Statist. 35 (1999), 605-630. | Zbl 0933.60047

[001] [CAR] L. Carleson, Two remarks on H1 and BMO, Adv. Math. 22 (1976), 269-277. | Zbl 0357.46058

[002] [COI] R. Coifman, A real-variable characterization of Hp, Studia Math. 51 (1974), 269-274. | Zbl 0289.46037

[003] [CW] R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645. | Zbl 0358.30023

[004] [DEL1] T. Delmotte, Versions discrètes de l'inégalité de Harnack, thesis, University of Cergy-Pontoise, 1997.

[005] [DEL2] T. Delmotte, Parabolic Harnack inequality and estimates of Markov chains on graphs, Rev. Mat. Iberoamericana 15 (1999), 181-232. | Zbl 0922.60060

[006] [HOR] L. Hörmander, Lp estimates for (pluri-)subharmonic functions, Math. Scand. 20 (1967), 65-78. | Zbl 0156.12201

[007] [LAT] R. H. Latter, A decomposition of Hp(n) in terms of atoms, Studia Math. 62 (1978), 92-101.

[008] [MS1] R. Macías and C. Segovia, Lipschitz functions on spaces of homogeneous type, Adv. Math. 33 (1979), 257-270. | Zbl 0431.46018

[009] [MS2] R. Macías and C. Segovia, A decomposition into atoms of distributions on spaces of homogeneous type, Adv. Math. 33 (1979), 271-309. | Zbl 0431.46019

[010] [MEY] Y. Meyer, Dualité entre H1 et BMO sur les espaces de type homogène par Lennart Carleson, unpublished notes.

[011] [RUS] E. Russ, H1-BMO duality on Riemannian manifolds, preprint.

[012] [SC] L. Saloff-Coste, Analyse sur les groupes de Lie à croissance polynomiale, Ark. Mat. 28 (1990), 315-331. | Zbl 0715.43009

[013] [ST] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.

[014] [UCH] A. Uchiyama, A maximal function characterization of Hp on the space of homogeneous type, Trans. Amer. Math. Soc. 262 (1980), 579-592. | Zbl 0503.46020