We prove Fujita-type global existence and nonexistence theorems for a system of m equations (m > 1) with different diffusion coefficients, i.e. with nonnegative, bounded, continuous initial values and , , , . For solutions which blow up at , we derive the following bounds on the blow up rate: with C > 0 and defined in terms of .
@article{bwmeta1.element.bwnjournal-article-cmv86i1p43bwm, author = {Joanna Renc\l awowicz}, title = {Blow up, global existence and growth rate estimates in nonlinear parabolic systems}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {43-66}, zbl = {0959.35084}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p43bwm} }
Rencławowicz, Joanna. Blow up, global existence and growth rate estimates in nonlinear parabolic systems. Colloquium Mathematicae, Tome 84/85 (2000) pp. 43-66. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p43bwm/
[000] [AHV] D. Andreucci, M. A. Herrero and J. J. L. Velázquez, Liouville theorems and blow up behaviour in semilinear reaction diffusion systems, Ann. Inst. H. Poincaré 14 (1997), 1-53. | Zbl 0877.35019
[001] [CM] G. Caristi and E. Mitidieri, Blow up estimates of positive solutions of a parabolic system, J. Differential Equations 113 (1994), 265-271. | Zbl 0807.35066
[002] [EH] M. Escobedo and M. A. Herrero, Boundedness and blow up for a semilinear reaction-diffusion system, ibid. 89 (1991), 176-202. | Zbl 0735.35013
[003] [EL] M. Escobedo and H. A. Levine, Critical blow up and global existence numbers for a weakly coupled system of reaction-diffusion equations, Arch. Rational Mech. Anal. 129 (1995), 47-100. | Zbl 0822.35068
[004] [Fu1] H. Fujita, On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, in: Proc. Sympos. Pure Math. 18, Amer. Math. Soc., 1970, 105-113.
[005] [Fu2] H. Fujita, On the blowing up of solutions of the Cauchy problem for , J. Fac. Sci. Univ. Tokyo Sect. IA Math. 13 (1966), 109-124.
[006] [GK] Y. Giga and R. V. Kohn, Characterizing blow-up using similarity variables, Indiana Univ. Math. J. 36 (1987), 1-40. | Zbl 0601.35052
[007] [H] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, Heidelberg, 1981. | Zbl 0456.35001
[008] [L] G. Lu, Global existence and blow-up for a class of semilinear parabolic systems: a Cauchy problem, Nonlinear Anal. 24 (1995), 1193-1206. | Zbl 0830.35050
[009] [LS] G. Lu and B. D. Sleeman, Subsolutions and supersolutions to systems of parabolic equations with applications to generalized Fujita type systems, Math. Methods Appl. Sci. 17 (1994), 1005-1016. | Zbl 0807.35061
[010] [R1] J. Rencławowicz, Global existence and blow up of solutions for a completely coupled Fujita type system of reaction-diffusion equations, Appl. Math. (Warsaw) 25 (1998), 313-326. | Zbl 1002.35070
[011] [R2] J. Rencławowicz, Global existence and blow up of solutions for a class of reaction-diffusion systems, J. Appl. Anal., to appear.
[012] [R3] J. Rencławowicz, Global existence and blow up of solutions for a weakly coupled Fujita type system of reaction-diffusion equations, ibid., to appear.
[013] [R4] J. Rencławowicz, Global existence and blow-up for a completely coupled Fujita type system, Appl. Math. (Warsaw) 27 (2000), 203-218. | Zbl 0994.35055