For any positive integer let ϕ(n) be the Euler function of n. A positive integer is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression consists entirely of noncototients. We then use computations to detect seven such positive integers k.
@article{bwmeta1.element.bwnjournal-article-cmv86i1p37bwm, author = {A. Flammenkamp and F. Luca}, title = {Infinite families of noncototients}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {37-41}, zbl = {0965.11003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p37bwm} }
Flammenkamp, A.; Luca, F. Infinite families of noncototients. Colloquium Mathematicae, Tome 84/85 (2000) pp. 37-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p37bwm/
[000] [1] J. Browkin and A. Schinzel, On integers not of the form n-ϕ(n), Colloq. Math. 68 (1995), 55-58. | Zbl 0820.11003
[001] [2] P. Erdős, On integers of the form and related problems, Summa Brasil. Math. 2 (1950), 113-123.
[002] [3] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
[003] [4] H. Riesel, Nοgra stora primtal [Some large primes], Elementa 39 (1956), 258-260 (in Swedish).
[004] [5] W. Sierpiński, Sur un problème concernant les nombres , Elem. Math. 15 (1960), 73-74; Corrigendum, ibid. 17 (1962), 85. | Zbl 0093.04602
[005] [6] The Riesel Problem, http:/vamri.xray.ufl.edu/proths/rieselprob.html.