Infinite families of noncototients
Flammenkamp, A. ; Luca, F.
Colloquium Mathematicae, Tome 84/85 (2000), p. 37-41 / Harvested from The Polish Digital Mathematics Library

For any positive integer n let ϕ(n) be the Euler function of n. A positive integer n is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression (2mk)m1 consists entirely of noncototients. We then use computations to detect seven such positive integers k.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210840
@article{bwmeta1.element.bwnjournal-article-cmv86i1p37bwm,
     author = {A. Flammenkamp and F. Luca},
     title = {Infinite families of noncototients},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {37-41},
     zbl = {0965.11003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p37bwm}
}
Flammenkamp, A.; Luca, F. Infinite families of noncototients. Colloquium Mathematicae, Tome 84/85 (2000) pp. 37-41. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p37bwm/

[000] [1] J. Browkin and A. Schinzel, On integers not of the form n-ϕ(n), Colloq. Math. 68 (1995), 55-58. | Zbl 0820.11003

[001] [2] P. Erdős, On integers of the form 2k+p and related problems, Summa Brasil. Math. 2 (1950), 113-123.

[002] [3] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.

[003] [4] H. Riesel, Nοgra stora primtal [Some large primes], Elementa 39 (1956), 258-260 (in Swedish).

[004] [5] W. Sierpiński, Sur un problème concernant les nombres k·2n+1, Elem. Math. 15 (1960), 73-74; Corrigendum, ibid. 17 (1962), 85. | Zbl 0093.04602

[005] [6] The Riesel Problem, http:/vamri.xray.ufl.edu/proths/rieselprob.html.