For any positive integer n let ϕ(n) and σ(n) be the Euler function of n and the sum of divisors of n, respectively. In [5], Mąkowski and Schinzel conjectured that the inequality σ(ϕ(n)) ≥ n/2 holds for all positive integers n. We show that the lower density of the set of positive integers satisfying the above inequality is at least 0.74.
@article{bwmeta1.element.bwnjournal-article-cmv86i1p31bwm, author = {A. Grytczuk and F. Luca and M. W\'ojtowicz}, title = {On a conjecture of Makowski and Schinzel concerning the composition of the arithmetic functions s and ph}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {31-36}, zbl = {0965.11004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p31bwm} }
Grytczuk, A.; Luca, F.; Wójtowicz, M. On a conjecture of Mąkowski and Schinzel concerning the composition of the arithmetic functions σ and ϕ. Colloquium Mathematicae, Tome 84/85 (2000) pp. 31-36. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p31bwm/
[000] [1] U. Balakrishnan, Some remark on σ(ϕ(n)), Fibonacci Quart. 32 (1994), 293-296.
[001] [2] G. L. Cohen, On a conjecture of Mąkowski and Schinzel, Colloq. Math. 74 (1997), 1-8.
[002] [3] M. Filaseta, S. W. Graham and C. Nicol, On the composition of σ(n) and ϕ(n), Abstracts Amer. Math. Soc. 13 (1992), no. 4, p. 137.
[003] [4] R. K. Guy, Unsolved Problems in Number Theory, Springer, 1994.
[004] [5] A. Mąkowski and A. Schinzel, On the functions ϕ(n) and σ(n), Colloq. Math. 13 (1964-1965), 95-99.
[005] [6] D. S. Mitrinović, J. Sándor and B. Crstici, Handbook of Number Theory, Kluwer, 1996.
[006] [7] C. Pomerance, On the composition of the arithmetic functions σ and ϕ, Colloq. Math. 58 (1989), 11-15.