A note on a conjecture of Jeśmanowicz
Deng, Moujie ; Cohen, G.
Colloquium Mathematicae, Tome 84/85 (2000), p. 25-30 / Harvested from The Polish Digital Mathematics Library

Let a, b, c be relatively prime positive integers such that a2+b2=c2. Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of (an)x+(bn)y=(cn)z in positive integers is x=y=z=2. If n=1, then, equivalently, the equation (u2-v2)x+(2uv)y=(u2+v2)z, for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210838
@article{bwmeta1.element.bwnjournal-article-cmv86i1p25bwm,
     author = {Moujie Deng and G. Cohen},
     title = {A note on a conjecture of Je\'smanowicz},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {25-30},
     zbl = {0960.11026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p25bwm}
}
Deng, Moujie; Cohen, G. A note on a conjecture of Jeśmanowicz. Colloquium Mathematicae, Tome 84/85 (2000) pp. 25-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p25bwm/

[000] [1] J. R. Chen, On Jeśmanowicz' conjecture, Acta Sci. Natur. Univ. Szechan 2 (1962), 19-25 (in Chinese).

[001] [2] V. A. Dem'janenko [V. A. Dem'yanenko], On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).

[002] [3] M. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), 515-524. | Zbl 0916.11020

[003] [4] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202 (in Polish).

[004] [5] C. Ko, On the Diophantine equation (a2-b2)x+(2ab)y=(a2+b2)z, Acta Sci. Natur. Univ. Szechan 3 (1959), 25-34 (in Chinese).

[005] [6] M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98. | Zbl 0876.11013

[006] [7] W. T. Lu, On the Pythagorean numbers 4n2-1, 4n and 4n2+1, Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).

[007] [8] W. Sierpiński, On the equation 3x+4y=5z, Wiadom. Mat. 1 (1955/56), 194-195 (in Polish). | Zbl 0074.27204

[008] [9] K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349. | Zbl 0822.11025

[009] [10] K. Takakuwa, A remark on Jeśmanowicz' conjecture, ibid. 72 (1996), 109-110. | Zbl 0863.11025