Let a, b, c be relatively prime positive integers such that . Jeśmanowicz conjectured in 1956 that for any given positive integer n the only solution of in positive integers is x=y=z=2. If n=1, then, equivalently, the equation , for integers u>v>0, has only the solution x=y=z=2. We prove that this is the case when one of u, v has no prime factor of the form 4l+1 and certain congruence and inequality conditions on u, v are satisfied.
@article{bwmeta1.element.bwnjournal-article-cmv86i1p25bwm, author = {Moujie Deng and G. Cohen}, title = {A note on a conjecture of Je\'smanowicz}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {25-30}, zbl = {0960.11026}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p25bwm} }
Deng, Moujie; Cohen, G. A note on a conjecture of Jeśmanowicz. Colloquium Mathematicae, Tome 84/85 (2000) pp. 25-30. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p25bwm/
[000] [1] J. R. Chen, On Jeśmanowicz' conjecture, Acta Sci. Natur. Univ. Szechan 2 (1962), 19-25 (in Chinese).
[001] [2] V. A. Dem'janenko [V. A. Dem'yanenko], On Jeśmanowicz' problem for Pythagorean numbers, Izv. Vyssh. Uchebn. Zaved. Mat. 48 (1965), 52-56 (in Russian).
[002] [3] M. Deng and G. L. Cohen, On the conjecture of Jeśmanowicz concerning Pythagorean triples, Bull. Austral. Math. Soc. 57 (1998), 515-524. | Zbl 0916.11020
[003] [4] L. Jeśmanowicz, Several remarks on Pythagorean numbers, Wiadom. Mat. 1 (1955/56), 196-202 (in Polish).
[004] [5] C. Ko, On the Diophantine equation , Acta Sci. Natur. Univ. Szechan 3 (1959), 25-34 (in Chinese).
[005] [6] M. H. Le, A note on Jeśmanowicz' conjecture concerning Pythagorean numbers, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 97-98. | Zbl 0876.11013
[006] [7] W. T. Lu, On the Pythagorean numbers , 4n and , Acta Sci. Natur. Univ. Szechuan 2 (1959), 39-42 (in Chinese).
[007] [8] W. Sierpiński, On the equation , Wiadom. Mat. 1 (1955/56), 194-195 (in Polish). | Zbl 0074.27204
[008] [9] K. Takakuwa, On a conjecture on Pythagorean numbers. III, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 345-349. | Zbl 0822.11025
[009] [10] K. Takakuwa, A remark on Jeśmanowicz' conjecture, ibid. 72 (1996), 109-110. | Zbl 0863.11025