The assertion every Radon measure defined on a first-countable compact space is uniformly regular is shown to be relatively consistent. We prove an analogous result on the existence of uniformly distributed sequences in compact spaces of small character. We also present two related examples constructed under CH.
@article{bwmeta1.element.bwnjournal-article-cmv86i1p15bwm, author = {Grzegorz Plebanek}, title = {Approximating Radon measures on first-countable compact spaces}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {15-23}, zbl = {0996.28005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p15bwm} }
Plebanek, Grzegorz. Approximating Radon measures on first-countable compact spaces. Colloquium Mathematicae, Tome 84/85 (2000) pp. 15-23. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p15bwm/
[000] [1] A. G. Babiker, On uniformly regular topological measure spaces, Duke Math. J. 43 (1976), 775-789. | Zbl 0404.28007
[001] [2] M. Džamonja and K. Kunen, Measures on compact HS spaces, Fund. Math. 143 (1993), 41-54. | Zbl 0805.28008
[002] [3] R. Frankiewicz and G. Plebanek, On asymptotic density and uniformly distributed sequences, Studia Math. 119 (1996),17-26. | Zbl 0860.11004
[003] [4] R. Frankiewicz, G. Plebanek and C. Ryll-Nardzewski, Between Lindelöf property and countable tightness, Proc. Amer. Math. Soc., to appear.
[004] [5] D. H. Fremlin, Consequences of Martin's Axiom, Cambridge Univ. Press, Cambridge, 1984. | Zbl 0551.03033
[005] [6] D. H. Fremlin, Measure algebras, in: Handbook of Boolean Algebras, J. D. Monk (ed.), North-Holland, 1989, Vol. III, Chap. 22.
[006] [7] D. H. Fremlin, Real-valued-measurable cardinals, in: Set Theory of the Reals, H. Judah (ed.), Israel Math. Conf. Proc. 6, Bar-Ilan Univ., 1993, 151-304. | Zbl 0839.03038
[007] [8] D. H. Fremlin, On compact spaces carrying Radon measures of uncountable Maharam type, Fund. Math. 154 (1997), 295-304. | Zbl 0894.28007
[008] [9] D. H. Fremlin, Problems, September 1998.
[009] [10] R. Haydon, On dual -spaces and injective bidual Banach spaces, Israel J. Math. 31 (1978), 142-152. | Zbl 0407.46018
[010] [11] J. Kraszewski, Properties of ideals on the generalized Cantor spaces, doctoral dissertation, Wrocław, 1999 (available from kraszew@math.uni.wroc.pl).
[011] [12] L. Kuipers and H. Niederreiter, Uniform Distribution of Sequences, Wiley, New York, 1974. | Zbl 0281.10001
[012] [13] K. Kunen, A compact L-space under CH, Topology Appl. 12 (1981), 283-287.
[013] [14] K. Kunen and J. van Mill, Measures on Corson compact spaces, Fund. Math. 147 (1995), 61-72. | Zbl 0834.54014
[014] [15] V. Losert, On the existence of uniformly distributed sequences in compact topological spaces II, Monatsh. Math. 87 (1979), 247-260. | Zbl 0389.10035
[015] [16] S. Mercourakis, Some remarks on countably determined measures and uniform distribution of sequences, ibid. 121 (1996), 79-101. | Zbl 0901.28009
[016] [17] D. Plachky, Extremal and monogenic additive set functions, Proc. Amer. Math. Soc. 54 (1976), 193-196. | Zbl 0285.28005
[017] [18] G. Plebanek, On Radon measures on first-countable spaces, Fund. Math. 148 (1995), 159-164. | Zbl 0853.28005
[018] [19] G. Plebanek, Nonseparable Radon measures and small compact spaces, ibid. 153 (1997), 25-40. | Zbl 0905.28008
[019] [20] R. Pol, Note on the spaces of regular probability measures whose topology is determined by countable subsets, Pacific J. Math. 100 (1982), 185-201. | Zbl 0522.46019
[020] [21] J. E. Vaughan, Small uncountable cardinals and topology, in: Open Problems in Topology, J. van Mill and G. M. Reed (eds.), North-Holland, 1990, Chap. 11.