We investigate random Sidon-type sets in which the degrees of the representations are weighted. These variants of Sidon sets are of interest as there are compact non-abelian groups which admit no infinite Sidon sets. In this note we determine the largest weight function such that infinite random weighted Sidon sets exist in all infinite compact groups.
@article{bwmeta1.element.bwnjournal-article-cmv86i1p103bwm, author = {Kathryn Hare}, title = {Random weighted Sidon sets}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {103-109}, zbl = {0960.43007}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p103bwm} }
Hare, Kathryn. Random weighted Sidon sets. Colloquium Mathematicae, Tome 84/85 (2000) pp. 103-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p103bwm/
[000] [1] K. Adams, Weighted Sidon sets, Ph.D. dissertation, Univ. of Missouri, 1998.
[001] [2] K. Adams and D. Grow, Lacunary series on compact groups, this issue, 1-7.
[002] [3] A. Dooley, Central lacunary sets for Lie groups, J. Austral. Math. Soc. 45 (1988), 30-45. | Zbl 0689.43003
[003] [4] A. Dooley and P. Soardi, Local p-Sidon sets for Lie groups, Proc. Amer. Math. Soc. 72 (1978), 125-126. | Zbl 0398.43008
[004] [5] K. Hare, The size of characters of compact Lie groups, Studia Math. 129 (1998), 1-18. | Zbl 0946.43006
[005] [6] K. Hare and D. Wilson, Weighted p-Sidon sets, J. Austral. Math. Soc. 61 (1996), 73-95. | Zbl 0874.43005
[006] [7] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer, New York, 1979. | Zbl 0416.43001
[007] [8] J. López and K. Ross, Sidon Sets, Marcel Dekker, New York, 1975.
[008] [9] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, Princeton, 1981. | Zbl 0474.43004
[009] [10] W. Parker, Central Sidon and central sets, J. Austral. Math. Soc. 14 (1972), 62-74. | Zbl 0237.43004
[010] [11] D. Ragozin, Central measures on compact simple Lie groups, J. Funct. Anal. 10 (1972), 212-229. | Zbl 0286.43002
[011] [12] D. Rider, Randomly continuous functions and Sidon sets, Duke Math. J. 42 (1975), 759-764. | Zbl 0345.43008
[012] [13] S. Sidon, Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourierreihen mit Lücken, Math. Ann. 97 (1927), 675-676. | Zbl 53.0252.02