Random weighted Sidon sets
Hare, Kathryn
Colloquium Mathematicae, Tome 84/85 (2000), p. 103-109 / Harvested from The Polish Digital Mathematics Library

We investigate random Sidon-type sets in which the degrees of the representations are weighted. These variants of Sidon sets are of interest as there are compact non-abelian groups which admit no infinite Sidon sets. In this note we determine the largest weight function such that infinite random weighted Sidon sets exist in all infinite compact groups.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210833
@article{bwmeta1.element.bwnjournal-article-cmv86i1p103bwm,
     author = {Kathryn Hare},
     title = {Random weighted Sidon sets},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {103-109},
     zbl = {0960.43007},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p103bwm}
}
Hare, Kathryn. Random weighted Sidon sets. Colloquium Mathematicae, Tome 84/85 (2000) pp. 103-109. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv86i1p103bwm/

[000] [1] K. Adams, Weighted Sidon sets, Ph.D. dissertation, Univ. of Missouri, 1998.

[001] [2] K. Adams and D. Grow, Lacunary series on compact groups, this issue, 1-7.

[002] [3] A. Dooley, Central lacunary sets for Lie groups, J. Austral. Math. Soc. 45 (1988), 30-45. | Zbl 0689.43003

[003] [4] A. Dooley and P. Soardi, Local p-Sidon sets for Lie groups, Proc. Amer. Math. Soc. 72 (1978), 125-126. | Zbl 0398.43008

[004] [5] K. Hare, The size of characters of compact Lie groups, Studia Math. 129 (1998), 1-18. | Zbl 0946.43006

[005] [6] K. Hare and D. Wilson, Weighted p-Sidon sets, J. Austral. Math. Soc. 61 (1996), 73-95. | Zbl 0874.43005

[006] [7] E. Hewitt and K. Ross, Abstract Harmonic Analysis, Springer, New York, 1979. | Zbl 0416.43001

[007] [8] J. López and K. Ross, Sidon Sets, Marcel Dekker, New York, 1975.

[008] [9] M. Marcus and G. Pisier, Random Fourier Series with Applications to Harmonic Analysis, Ann. of Math. Stud. 101, Princeton Univ. Press, Princeton, 1981. | Zbl 0474.43004

[009] [10] W. Parker, Central Sidon and central Λ(p) sets, J. Austral. Math. Soc. 14 (1972), 62-74. | Zbl 0237.43004

[010] [11] D. Ragozin, Central measures on compact simple Lie groups, J. Funct. Anal. 10 (1972), 212-229. | Zbl 0286.43002

[011] [12] D. Rider, Randomly continuous functions and Sidon sets, Duke Math. J. 42 (1975), 759-764. | Zbl 0345.43008

[012] [13] S. Sidon, Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourierreihen mit Lücken, Math. Ann. 97 (1927), 675-676. | Zbl 53.0252.02