Aspects of uniformity in recurrence
Bergelson, Vitaly ; Host, Bernard ; McCutcheon, Randall ; Parreau, Franiçois
Colloquium Mathematicae, Tome 84/85 (2000), p. 549-576 / Harvested from The Polish Digital Mathematics Library

We analyze and cite applications of various, loosely related notions of uniformity inherent to the phenomenon of (multiple) recurrence in ergodic theory. An assortment of results are obtained, among them sharpenings of two theorems due to Bourgain. The first of these, which in the original guarantees existence of sets x,x+h,x+h2 in subsets E of positive measure in the unit interval, with lower bounds on h depending only on m(E), is expanded to the case of arbitrary finite polynomial configurations in subsets of positive measure in cubes of n. The second is a direct computation of a lower bound, uniform in a and b and depending only on ∫f, for ∫f(x)f(x+at)f(x+bt)dxdt, where 0≤f≤1 is a function on the 1-torus. Our methodology parallels that of Bourgain, who originally considered the case a=1, b=2.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210832
@article{bwmeta1.element.bwnjournal-article-cmv84i2p549bwm,
     author = {Vitaly Bergelson and Bernard Host and Randall McCutcheon and Frani\c cois Parreau},
     title = {Aspects of uniformity in recurrence},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {549-576},
     zbl = {0966.28009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p549bwm}
}
Bergelson, Vitaly; Host, Bernard; McCutcheon, Randall; Parreau, Franiçois. Aspects of uniformity in recurrence. Colloquium Mathematicae, Tome 84/85 (2000) pp. 549-576. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p549bwm/

[000] [B] V. Bergelson, Sets of recurrence of m-actions and properties of sets of differences in m, J. London Math. Soc. (2) 31 (1985), 295-304. | Zbl 0579.10029

[001] [BBB] V. Bergelson, M. Boshernitzan, and J. Bourgain, Some results on non-linear recurrence, J. Anal. Math. 62 (1994), 29-46. | Zbl 0803.28011

[002] [BH] V. Bergelson and I. Håland, Sets of recurrence and generalized polynomials, in: Convergence in Ergodic Theory and Probability, June 1993, Ohio State University Math. Research Institute Publications, de Gruyter, 1996, 91-110.

[003] [BL] V. Bergelson and A. Leibman, Polynomial extensions of van der Waerden's and Szemerédi's theorem, J. Amer. Math. Soc. 9 (1996), 725-753. | Zbl 0870.11015

[004] [Bo1] J. Bourgain, A Szemerédi type theorem for sets of positive density in k, Israel J. Math. 54 (1986), 307-316. | Zbl 0609.10043

[005] [Bo2] J. Bourgain, A non-linear version of Roth's theorem for sets of positive density in the real line, J. Anal. Math. 50 (1988), 169-181. | Zbl 0675.42010

[006] [Fo] A. Forrest, Recurrence in dynamical systems: a combinatorial approach, Ph.D. Thesis, Ohio State University, 1990.

[007] [F] H. Furstenberg, Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions, ibid. 31 (1977), 204-256. | Zbl 0347.28016

[008] [FK] H. Furstenberg and Y. Katznelson, An ergodic Szemerédi theorem for commuting transformations, ibid. 34 (1978), 275-291. | Zbl 0426.28014

[009] [FKO] H. Furstenberg, Y. Katznelson and D. Ornstein, The ergodic theoretical proof of Szemerédi's theorem, Bull. Amer. Math. Soc. 7 (1982), 527-552. | Zbl 0523.28017

[010] [G1] W. T. Gowers, A new proof of Szemerédi's theorem for arithmetic progressions of length four, Geom. Funct. Anal. 8 (1998), 529-551. | Zbl 0907.11005

[011] [G2] W. T. Gowers, Fourier analysis and Szemerédi's theorem, in: Proc. Internat. Congress Math., Vol. I, Doc. Math. (Berlin, 1998), 617-629. | Zbl 0999.11012

[012] [G3] W. T. Gowers, A new proof of Szemerédi's theorem, Geom. Funct. Anal., to appear. | Zbl 1028.11005

[013] [H-B] D. R. Heath-Brown, Integer sets containing no arithmetic progressions, J. London Math. Soc. (2) 35 (1987), 385-394. | Zbl 0589.10062

[014] [La] Y. Lacroix, private communication.

[015] [L] D. Lind, Locally compact measure preserving flows, Adv. Math. 15 (1975), 175-193. | Zbl 0293.28012

[016] [R] K. Roth, Sur quelques ensembles d'entiers, C. R. Acad. Sci. Paris 234 (1952), 388-390. | Zbl 0046.04302

[017] [S1] E. Szemerédi, On sets of integers containing no k elements in arithmetic progression, Acta Arith. 27 (1975), 199-245. | Zbl 0303.10056

[018] [S2] E. Szemerédi, Integer sets containing no arithmetic progressions, Acta Math. Hungar. 56 (1990), 155-158. | Zbl 0721.11007