The generic transformation has roots of all orders
King, Jonathan
Colloquium Mathematicae, Tome 84/85 (2000), p. 521-547 / Harvested from The Polish Digital Mathematics Library

In the sense of the Baire Category Theorem we show that the generic transformation T has roots of all orders (RAO theorem). The argument appears novel in that it proceeds by establishing that the set of such T is not meager - and then appeals to a Zero-One Law (Lemma 2). On the group Ω of (invertible measure-preserving) transformations, §D shows that the squaring map p: S → S^{2} is topologically complex in that both the locally-dense and locally-lacunary points of p are dense (Theorem 23). The last section, §E, discusses the relation between RAO and a recent example of Blair Madore. Answering a question of the author's, Madore constructs a transformation with a square-root chain of each finite length, yet possessing no infinite square-root chain.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210831
@article{bwmeta1.element.bwnjournal-article-cmv84i2p521bwm,
     author = {Jonathan King},
     title = {The generic transformation has roots of all orders},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {521-547},
     zbl = {0972.37001},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p521bwm}
}
King, Jonathan. The generic transformation has roots of all orders. Colloquium Mathematicae, Tome 84/85 (2000) pp. 521-547. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p521bwm/

[000] [1] F. Beleznay, The complexity of the collection of countable linear orders of the form (I+I), preprint, 1997. | Zbl 0944.03046

[001] [2] K. R. Berg, Mixing, cyclic approximation, and homomorphisms, Maryland Technical Report, 1975.

[002] [3] N. Friedman, P. Gabriel, and J. L. King, An invariant for rigid rank-1 transformations, Ergodic Theory Dynam. Systems 8:53-72, 1988. | Zbl 0621.28011

[003] [4] E. Glasner and J. L. King, A zero-one law for dynamical properties, in: Topological Dynamics and Applications (Minneapolis, MN, 1995), Amer. Math. Soc., Providence, RI, 1998, 231-242. | Zbl 0909.28014

[004] [5] P. R. Halmos, Lectures on Ergodic Theory, Publ. Math. Soc. Japan 3, Math. Soc. Japan, 1956.

[005] [6] P. D. Humke and M. Laczkovich, The Borel structure of iterates of continuous functions, Proc. Edinburgh Math. Soc. (2) 32:483-494, 1989. | Zbl 0671.28003

[006] [7] A. del Junco and D. Rudolph, On ergodic actions whose self-joinings are graphs, Ergodic Theory Dynam. Systems 7:531-557, 1987. | Zbl 0646.60010

[007] [8] A. B. Katok, Ya. G. Sinaĭ, and A. M. Stepin, The theory of dynamical systems and general transformation groups with invariant measure, (errata insert), Vsesoyuz. Inst. Nauchn. i Tekhn. Informatsii, Akad. Nauk SSSR, Moscow, 1975, 129-262 (in Russian). | Zbl 0399.28011

[008] [9] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (1967), no. 5, 81-106. | Zbl 0172.07202

[009] [10] J. L. King, The commutant is the weak closure of the powers, for rank-1 transformations, Ergodic Theory Dynam. Systems 6:363-384, 1986. | Zbl 0595.47005

[010] [11] J. L. King, Joining-rank and the structure of finite rank mixing transformations, J. Anal. Math. 51:182-227, 1988. | Zbl 0665.28010

[011] [12] K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.

[012] [13] B. F. Madore, Rank-one mixing actions with simple ℤ subactions, Doctoral dissertation, 2000.

[013] [14] D. S. Ornstein, On the root problem in ergodic theory, in: Proc. Sixth Berkeley Sympos. Math. Statist. Probab. (Berkeley, CA, 1970/1971), Vol. II: Probability Theory, Univ. California Press, Berkeley, CA, 1972, 347-356.

[014] [15] D. J. Rudolph, An example of a measure preserving map with minimal self-joinings, and applications, J. Anal. Math. 35:97-122, 1979 | Zbl 0446.28018

[015] [16] W. A. Veech, A criterion for a process to be prime, Monatsh. Math. 94:335-341, 1982. | Zbl 0499.28016