Ergodic decomposition of quasi-invariant probability measures
Greschonig, Gernot ; Schmidt, Klaus
Colloquium Mathematicae, Tome 84/85 (2000), p. 495-514 / Harvested from The Polish Digital Mathematics Library

The purpose of this note is to prove various versions of the ergodic decomposition theorem for probability measures on standard Borel spaces which are quasi-invariant under a Borel action of a locally compact second countable group or a discrete nonsingular equivalence relation. In the process we obtain a simultaneous ergodic decomposition of all quasi-invariant probability measures with a prescribed Radon-Nikodym derivative, analogous to classical results about decomposition of invariant probability measures.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210829
@article{bwmeta1.element.bwnjournal-article-cmv84i2p495bwm,
     author = {Gernot Greschonig and Klaus Schmidt},
     title = {Ergodic decomposition of quasi-invariant probability measures},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {495-514},
     zbl = {0972.37003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p495bwm}
}
Greschonig, Gernot; Schmidt, Klaus. Ergodic decomposition of quasi-invariant probability measures. Colloquium Mathematicae, Tome 84/85 (2000) pp. 495-514. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p495bwm/

[000] [1] P. Billingsley, Probability and Measure, Wiley, New York, 1979. | Zbl 0411.60001

[001] [2] R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153-160. | Zbl 0134.12102

[002] [3] J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. Math. 28 (1978), 186-230. | Zbl 0392.28023

[003] [4] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras. I, Trans. Amer. Math. Soc. 234 (1977), 289-324. | Zbl 0369.22009

[004] [5] S. R. Foguel, Ergodic decomposition of a topological space, Israel J. Math. 7 (1969), 164-167. | Zbl 0179.08302

[005] [6] E. Hopf, On the ergodic theorem for positive linear operators, J. Reine Angew. Math. 205 (1960), 101-106. | Zbl 0103.33801

[006] [7] A. S. Kechris, Countable sections for locally compact groups, Ergodic Theory Dynam. Systems 12 (1992), 283-295.

[007] [8] J. Kerstan and A. Wakolbinger, Ergodic decomposition of probability laws, Z. Wahrsch. Verw. Gebiete 56 (1981), 399-414. | Zbl 0444.60004

[008] [9] Yu. I. Kifer and S. A. Pirogov, On the decomposition of quasi-invariant measures into ergodic components, Uspekhi Mat. Nauk 27 (1972), no. 5, 239-240 (in Russian). | Zbl 0248.28014

[009] [10] N. Lusin, Leçons sur les ensembles analytiques et leurs applications, Gauthier-Villars, Paris, 1930. | Zbl 56.0085.01

[010] [11] W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, Cambridge, 1981. | Zbl 0449.28016

[011] [12] K. R. Parthasarathy, Probability Measures on Metric Spaces, Academic Press, New York, 1967. | Zbl 0153.19101

[012] [13] R. R. Phelps, Lectures on Choquet's Theorem, van Nostrand Reinhold, New York, 1966. | Zbl 0135.36203

[013] [14] A. Ramsay, Virtual groups and group actions, Adv. Math. 6 (1971), 253-322. | Zbl 0216.14902

[014] [15] A. Ramsay, Subobjects of virtual groups, Pacific J. Math. 87 (1980), 389-454. | Zbl 0453.22005

[015] [16] K. Schmidt, Cocycles on Ergodic Transformation Groups, MacMillan (India), Delhi, 1977.

[016] [17] K. Schmidt, A probabilistic proof of ergodic decomposition, Sankhyā Ser. A 40 (1978), 10-18. | Zbl 0412.60004

[017] [18] K. Schmidt, Unique ergodicity for quasi-invariant measures, Math. Z. 167 (1979), 168-172. | Zbl 0416.28013

[018] [19] H. Shimomura, Ergodic decomposition of quasi-invariant measures, Publ. RIMS Kyoto Univ. 14 (1978), 359-381. | Zbl 0391.60004

[019] [20] H. Shimomura, Remark to the paper 'Ergodic decomposition of quasi-invariant measures', ibid. 19 (1983), 203-205. | Zbl 0509.60008

[020] [21] H. Shimomura, Remark to the ergodic decomposition, ibid. 26 (1990), 861-865. | Zbl 0716.28005

[021] [22] M. L. Sturgeon, The ergodic decomposition of conservative Baire measures, Proc. Amer. Math. Soc. 44 (1974), 141-146. | Zbl 0285.28020

[022] [23] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. Amer. Math. Soc. 109 (1963), 191-220. | Zbl 0192.14203

[023] [24] J. von Neumann, On rings of operators. Reduction theory, Ann. of Math. 50 (1949), 401-485. | Zbl 0034.06102

[024] [25] R. J. Zimmer, Ergodic Theory and Semisimple Groups, Birkhäuser, Boston, 1984. | Zbl 0571.58015