On measure theoretical analogues of the Takesaki structure theorem for type III factors
Danilenko, Alexandre ; Hamachi, Toshihiro
Colloquium Mathematicae, Tome 84/85 (2000), p. 485-493 / Harvested from The Polish Digital Mathematics Library

The orbit equivalence of type III0 ergodic equivalence relations is considered. We show that it is equivalent to the outer conjugacy problem for the natural trace-scaling action of a countable dense ℝ-subgroup by automorphisms of the Radon-Nikodym skew product extensions of these relations. A similar result holds for the weak equivalence of arbitrary type III0 cocycles with values in Abelian groups.

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210828
@article{bwmeta1.element.bwnjournal-article-cmv84i2p485bwm,
     author = {Alexandre Danilenko and Toshihiro Hamachi},
     title = {On measure theoretical analogues of the Takesaki structure theorem for type III factors},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {485-493},
     zbl = {1006.37006},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p485bwm}
}
Danilenko, Alexandre; Hamachi, Toshihiro. On measure theoretical analogues of the Takesaki structure theorem for type III factors. Colloquium Mathematicae, Tome 84/85 (2000) pp. 485-493. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p485bwm/

[000] [BG] S. I. Bezuglyi and V. Ya. Golodets, Weak equivalence and the structure of cocycles of an ergodic automorphism, Publ. RIMS Kyoto Univ. 27 (1991), 577-635.

[001] [Da1] A. I. Danilenko, The topological structure of Polish groups and groupoids of measure space transformations, ibid. 31 (1995), 913-940. | Zbl 0851.22001

[002] [Da2] A. I. Danilenko, Quasinormal subrelations of ergodic equivalence relations, Proc. Amer. Math. Soc. 126 (1998), 3361-3370. | Zbl 0917.28019

[003] [FHM] J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. Math. 28 (1978), 186-230. | Zbl 0392.28023

[004] [FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. | Zbl 0369.22009

[005] [Go] V. Ya. Golodets, Description of representations of anticommutation relations, Uspekhi Mat. Nauk 24 (1969), no. 4, 3-64 (in Russian); English transl. in Russian Math. Surveys 24 (1969).

[006] [GS] V. Ya. Golodets and S. D. Sinel'shchikov, Classification and structure of cocycles of amenable ergodic equivalence relations, J. Funct. Anal. 121 (1994), 455-485. | Zbl 0821.28010

[007] [Kr] W. Krieger, On ergodic flows and isomorphism of factors, Math. Ann. 223 (1976), 19-70. | Zbl 0332.46045

[008] [Mo] C. C. Moore, Ergodic theory and von Neumann algebras, in: Proc. Symp. Pure Math. 38, Part 2, Amer. Math. Soc., 1982, 179-226.

[009] [Sc1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, Delhi, 1977. | Zbl 0421.28017

[010] [Sc2] K. Schmidt, Algebraic Ideas in Ergodic Theory, CBMS Regional Conf. Ser. in Math. 76, Amer. Math. Soc., Providence, RI, 1990.

[011] [Ta] M. Takesaki, Duality for crossed product and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310. | Zbl 0268.46058