The orbit equivalence of type ergodic equivalence relations is considered. We show that it is equivalent to the outer conjugacy problem for the natural trace-scaling action of a countable dense ℝ-subgroup by automorphisms of the Radon-Nikodym skew product extensions of these relations. A similar result holds for the weak equivalence of arbitrary type cocycles with values in Abelian groups.
@article{bwmeta1.element.bwnjournal-article-cmv84i2p485bwm, author = {Alexandre Danilenko and Toshihiro Hamachi}, title = {On measure theoretical analogues of the Takesaki structure theorem for type III factors}, journal = {Colloquium Mathematicae}, volume = {84/85}, year = {2000}, pages = {485-493}, zbl = {1006.37006}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p485bwm} }
Danilenko, Alexandre; Hamachi, Toshihiro. On measure theoretical analogues of the Takesaki structure theorem for type III factors. Colloquium Mathematicae, Tome 84/85 (2000) pp. 485-493. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p485bwm/
[000] [BG] S. I. Bezuglyi and V. Ya. Golodets, Weak equivalence and the structure of cocycles of an ergodic automorphism, Publ. RIMS Kyoto Univ. 27 (1991), 577-635.
[001] [Da1] A. I. Danilenko, The topological structure of Polish groups and groupoids of measure space transformations, ibid. 31 (1995), 913-940. | Zbl 0851.22001
[002] [Da2] A. I. Danilenko, Quasinormal subrelations of ergodic equivalence relations, Proc. Amer. Math. Soc. 126 (1998), 3361-3370. | Zbl 0917.28019
[003] [FHM] J. Feldman, P. Hahn and C. C. Moore, Orbit structure and countable sections for actions of continuous groups, Adv. Math. 28 (1978), 186-230. | Zbl 0392.28023
[004] [FM] J. Feldman and C. C. Moore, Ergodic equivalence relations, cohomology, and von Neumann algebras I, Trans. Amer. Math. Soc. 234 (1977), 289-324. | Zbl 0369.22009
[005] [Go] V. Ya. Golodets, Description of representations of anticommutation relations, Uspekhi Mat. Nauk 24 (1969), no. 4, 3-64 (in Russian); English transl. in Russian Math. Surveys 24 (1969).
[006] [GS] V. Ya. Golodets and S. D. Sinel'shchikov, Classification and structure of cocycles of amenable ergodic equivalence relations, J. Funct. Anal. 121 (1994), 455-485. | Zbl 0821.28010
[007] [Kr] W. Krieger, On ergodic flows and isomorphism of factors, Math. Ann. 223 (1976), 19-70. | Zbl 0332.46045
[008] [Mo] C. C. Moore, Ergodic theory and von Neumann algebras, in: Proc. Symp. Pure Math. 38, Part 2, Amer. Math. Soc., 1982, 179-226.
[009] [Sc1] K. Schmidt, Cocycles of Ergodic Transformation Groups, Lecture Notes in Math. 1, MacMillan of India, Delhi, 1977. | Zbl 0421.28017
[010] [Sc2] K. Schmidt, Algebraic Ideas in Ergodic Theory, CBMS Regional Conf. Ser. in Math. 76, Amer. Math. Soc., Providence, RI, 1990.
[011] [Ta] M. Takesaki, Duality for crossed product and the structure of von Neumann algebras of type III, Acta Math. 131 (1973), 249-310. | Zbl 0268.46058