On the mean ergodic theorem for Cesàro bounded operators
Derriennic, Yves
Colloquium Mathematicae, Tome 84/85 (2000), p. 443-455 / Harvested from The Polish Digital Mathematics Library

For a Cesàro bounded operator in a Hilbert space or a reflexive Banach space the mean ergodic theorem does not hold in general. We give an additional geometrical assumption which is sufficient to imply the validity of that theorem. Our result yields the mean ergodic theorem for positive Cesàro bounded operators in Lp (1 < p < ∞). We do not use the tauberian theorem of Hardy and Littlewood, which was the main tool of previous authors. Some new examples, interesting for summability theory, are described: we build an example of a mean ergodic operator T in a Hilbert space such that Tn/n does not converge to 0, and whose adjoint operator is not mean ergodic (its Cesàro averages converge only weakly).

Publié le : 2000-01-01
EUDML-ID : urn:eudml:doc:210825
@article{bwmeta1.element.bwnjournal-article-cmv84i2p443bwm,
     author = {Yves Derriennic},
     title = {On the mean ergodic theorem for Ces\`aro bounded operators},
     journal = {Colloquium Mathematicae},
     volume = {84/85},
     year = {2000},
     pages = {443-455},
     zbl = {0968.47003},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p443bwm}
}
Derriennic, Yves. On the mean ergodic theorem for Cesàro bounded operators. Colloquium Mathematicae, Tome 84/85 (2000) pp. 443-455. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-cmv84i2p443bwm/

[000] [B] H. Berliocchi, unpublished manuscript, 1983.

[001] [DL] Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13 (1973), 252-267. | Zbl 0262.28011

[002] [DS] N. Dunford and J. T. Schwartz, Linear Operators, Part I, Interscience, 1958.

[003] [E1] R. Emilion, Opérateurs à moyennes bornées et théorèmes ergodiques en moyenne, C. R. Acad. Sci. Paris Sér. I 296 (1983), 641-643. | Zbl 0537.47004

[004] [E2] R. Emilion, Mean bounded operators and mean ergodic theorems, J. Funct. Anal. 61 (1985), 1-14. | Zbl 0562.47007

[005] [F] W. Feller, An Introduction to Probability Theory and its Applications, Vol. 2, Wiley, 1966. | Zbl 0138.10207

[006] [H] G. H. Hardy, Divergent Series, Clarendon Press, 1949.

[007] [Hi] E. Hille, Remarks on ergodic theorems, Trans. Amer. Math. Soc. 57 (1945), 246-269. | Zbl 0063.02017

[008] [K] U. Krengel, Ergodic Theorems, de Gruyter, 1985.

[009] [S] H. Schaefer, Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer, 1974. | Zbl 0296.47023

[010] [Z] A. Zygmund, Trigonometric Series, Vol. 1, 2nd ed., Cambridge Univ. Press, 1959. | Zbl 0085.05601